1
|
Alshehri MM, Kumar N, Kuthi NA, Olaide Z, Alshammari MK, Bello RO, Alghazwni MK, Alshehri AM, Alshlali OM, Ashimiyu-Abdusalam Z, Umar HI. Computer-aided drug discovery of c-Abl kinase inhibitors from plant compounds against chronic myeloid leukemia. J Biomol Struct Dyn 2024:1-21. [PMID: 38517058 DOI: 10.1080/07391102.2024.2329297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Chronic myeloid leukemia (CML) is a hematological malignancy characterized by the neoplastic transformation of hematopoietic stem cells, driven by the Philadelphia (Ph) chromosome resulting from a translocation between chromosomes 9 and 22. This Ph chromosome harbors the breakpoint cluster region (BCR) and the Abelson (ABL) oncogene (BCR-ABL1) which have a constitutive tyrosine kinase activity. However, the tyrosine kinase activity of BCR-ABL1 have been identified as a key player in CML initiation and maintenance through c-Abl kinase. Despite advancements in tyrosine kinase inhibitors, challenges such as efficacy, safety concerns, and recurring drug resistance persist. This study aims to discover potential c-Abl kinase inhibitors from plant compounds with anti-leukemic properties, employing drug-likeness assessment, molecular docking, in silico pharmacokinetics (ADMET) screening, density function theory (DFT), and molecular dynamics simulations (MDS). Out of 58 screened compounds for drug-likeness, 44 were docked against c-Abl kinase. The top hit compound (isovitexin) and nilotinib (control drug) were subjected to rigorous analyses, including ADMET profiling, DFT evaluation, and MDS for 100 ns. Isovitexin demonstrated a notable binding affinity (-15.492 kcal/mol), closely comparable to nilotinib (-16.826 kcal/mol), showcasing a similar binding pose and superior structural stability and reactivity. While these findings suggest isovitexin as a potential c-Abl kinase inhibitor, further validation through urgent in vitro and in vivo experiments is imperative. This research holds promise for providing an alternative avenue to address existing CML treatment and management challenges.
Collapse
Affiliation(s)
- Mohammed M Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Udaipur, India
| | - Najwa Ahmad Kuthi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor, Malaysia
| | - Zainab Olaide
- Department of Biochemistry, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | | | - Ridwan Opeyemi Bello
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, Akure, Nigeria
| | | | | | | | - Zainab Ashimiyu-Abdusalam
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, Akure, Nigeria
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research, Yaba, Nigeria
| | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
2
|
Jiang C, Xu H, Wu Y. Effect of chemotherapy in tumor on coronary arteries: Mechanisms and management. Life Sci 2024; 338:122377. [PMID: 38135114 DOI: 10.1016/j.lfs.2023.122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Coronary artery disease (CAD) is an important contributor to the cardiovascular burden in cancer survivors. The development of coronary ischemia events, myocardial infarction, and heart failure has been associated with many conventional chemotherapeutic agents, new targeted therapies, and immunotherapy. The most frequent pathological manifestations of chemotherapy-mediated coronary damage include acute vasospasm, acute thrombosis, accelerated atherosclerosis development, and microvascular dysfunction. Potential screening techniques for CAD patients include baseline risk factor evaluation, polygenic risk factors, and coronary artery calcium scores. Determining the risk requires consideration of both the type of chemotherapy and the type of cancer being treated. Cardiology-oncology guidelines offer some suggestions for the care of coronary artery disease, which might involve medication, lifestyle changes, and coronary revascularization.
Collapse
Affiliation(s)
- Chengqing Jiang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haiyan Xu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yongjian Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Ren JC, Wang T, Wu H, Zhang GH, Sun D, Guo K, Li H, Zhang F, Wu W, Xia ZL. Promoter hypermethylation in CSF3R induces peripheral neutrophil reduction in benzene-exposure poisoning. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:786-796. [PMID: 32329128 DOI: 10.1002/em.22382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/22/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Benzene is a global pollutant and has been established to cause leukemia. To better understand the role of DNA methylation in benzene toxicity, peripheral blood mononuclear cells were collected from six benzene-poisoning patients and six matched controls for genome-wide DNA methylation screening by Illumina Infinium Methylation 450 BeadChip. The Gene Chip Human Gene 2.0 ST Array (Affymetrix) was used to analyze global mRNA expression. Compared with the corresponding sites of controls, 442 sites in patients were hypermethylated, corresponding to 253 genes, and 237 sites were hypomethylated, corresponding to 130 genes. The promoter methylation and mRNA expression of CSF3R, CREB5, and F2R were selected for verification by bisulfite sequencing and real-time PCR in a larger data set with 21 cases and 23 controls. The results indicated that promoter methylation of CSF3R (p = .005) and F2R (p = .015) was significantly higher in cases than in controls. Correlation analysis showed that the promoter methylation of CSF3R (p < .001) and F2R (p < .001) was highly correlated with its mRNA expression. In the poisoning cases, neutrophil percentage was significantly different among the high, middle, and low CSF3R-methylation groups (p = .002). In particular, the neutrophil percentage in the high CSF3R-methylation group (48.10 ± 9.63%) was significantly lower than that in the low CSF3R-methylation group (59.30 ± 6.26%) (p = .012). The correlation coefficient between promoter methylation in CSF3R and the neutrophil percentage was -0.445 (p = .020) in cases and - 0.398 (p = .060) in controls. These results imply that hypermethylation occurs in the CSF3R promoter due to benzene exposure and is significantly associated with a reduction in neutrophils.
Collapse
Affiliation(s)
- Jing-Chao Ren
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Tongshuai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Hantian Wu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Guang-Hui Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Daoyuan Sun
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Kongrong Guo
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|