1
|
Ikeda H, Nagasaki J, Shimizu D, Katsuya Y, Horinouchi H, Hosomi Y, Tanji E, Iwata T, Itami M, Kawazu M, Ohe Y, Suzuki T, Togashi Y. Immunologic Significance of CD80/CD86 or Major Histocompatibility Complex-II Expression in Thymic Epithelial Tumors. JTO Clin Res Rep 2023; 4:100573. [PMID: 37799325 PMCID: PMC10550405 DOI: 10.1016/j.jtocrr.2023.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Unresectable or recurrent thymic epithelial tumors (TETs) have a poor prognosis, and treatment options are limited. This study aimed to investigate the immunologic significance of CD80/CD86 or major histocompatibility complex class II (MHC-II) expression in TETs, as potential predictive biomarkers for immune checkpoint inhibitors (ICIs). Methods We analyzed CD80, CD86, MHC class I (MHC-I), and MHC-II expression in TETs using immunohistochemistry and investigated their association with T-cell infiltration or ICI efficacy. In addition, we generated CD80- or MHC-II-expressing mouse tumors, evaluated the effects of ICIs, and analyzed tumor-infiltrating lymphocytes. We also performed tumor-rechallenge experiments in vivo. Results We found that approximately 50% and 30% of TETs had high expression of CD80/CD86 and MHC-II in tumor cells, respectively, and that this expression was related to T-cell infiltration in clinical samples. In mouse models, both CD80 and MHC-II increase the effects of ICIs. In addition, senescent T cells and long-lived memory precursor effector T cells were significantly decreased and increased, respectively, in tumor-infiltrating lymphocytes from CD80-expressing tumors, and rechallenged tumors were completely rejected after the initial eradication of CD80-expressing tumors by programmed cell death protein 1 blockade. Indeed, patients with CD80-high thymic carcinoma had longer progression-free survival with anti-programmed cell death protein 1 monoclonal antibody. Conclusions Half of the TETs had high expression of CD80/CD86 or MHC-II with high T-cell infiltration. These molecules could potentially increase the effects of ICIs, particularly inducing a durable response. CD80/CD86 and MHC-II can be predictive biomarkers of ICIs in TETs, promoting the development of drugs for such TETs.
Collapse
Affiliation(s)
- Hideki Ikeda
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Joji Nagasaki
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daiki Shimizu
- Division of Thoracic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Yuki Katsuya
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Etsuko Tanji
- Chiba Cancer Center, Research Institute, Chiba, Japan
| | - Takekazu Iwata
- Division of Thoracic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Makiko Itami
- Department of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | | | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Togashi
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Krishnamurti L. Hematopoietic Cell Transplantation for Sickle Cell Disease. Front Pediatr 2021; 8:551170. [PMID: 33469520 PMCID: PMC7813811 DOI: 10.3389/fped.2020.551170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is a severe autosomal recessively inherited disorder of the red blood cell characterized by erythrocyte deformation caused by the polymerization of the abnormal hemoglobin, which leads to erythrocyte deformation and triggers downstream pathological changes. These include abnormal rheology, vaso-occlusion, ischemic tissue damage, and hemolysis-associated endothelial dysfunction. These acute and chronic physiologic disturbances contribute to morbidity, organ dysfunction, and diminished survival. Hematopoietic cell transplantation (HCT) from HLA-matched or unrelated donors or haploidentical related donors or genetically modified autologous hematopoietic progenitor cells is performed with the intent of cure or long-term amelioration of disease manifestations. Excellent outcomes have been observed following HLA-identical matched related donor HCT. The majority of SCD patients do not have an available HLA-identical sibling donor. Increasingly, however, they have the option of undergoing HCT from unrelated HLA matched or related haploidentical donors. The preliminary results of transplantation of autologous hematopoietic progenitor cells genetically modified by adding a non-sickling gene or by genomic editing to increase expression of fetal hemoglobin are encouraging. These approaches are being evaluated in early-phase clinical trials. In performing HCT in patients with SCD, careful consideration must be given to patient and donor selection, conditioning and graft-vs.-host disease regimen, and pre-HCT evaluation and management during and after HCT. Sociodemographic factors may also impact awareness of and access to HCT. Further, there is a substantial decisional dilemma in HCT with complex tradeoffs between the possibility of amelioration of disease manifestations and early or late complications of HCT. The performance of HCT for SCD requires careful multidisciplinary collaboration and shared decision making between the physician and informed patients and caregivers.
Collapse
Affiliation(s)
- Lakshmanan Krishnamurti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
CTLA4Ig-primed donor lymphocyte infusions following haploidentical transplantation improve outcome with a distinct pattern of early immune reconstitution as compared to conventional donor lymphocyte infusions in advanced hematological malignancies. Bone Marrow Transplant 2020; 56:185-194. [PMID: 32704091 DOI: 10.1038/s41409-020-01002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022]
Abstract
CTLA4Ig has a unique property to spare or even potentiate natural killer (NK) cell-mediated cytotoxicity, whilst inhibiting T cell activation. We explored the efficacy of prophylactic DLI following CTLA4Ig (CTLA4Ig-DLI group, n = 75), compared to conventional DLI (DLI group, n = 50), in patients with advanced hematological malignancies receiving PTCy-based haploidentical transplantation. Acute and chronic GVHD in the CTLA4Ig-DLI group were 9.6% and 15.3% compared to 18.8% [p = 0.09] and 36.5% [p = 0.01] in the DLI group. Both non-relapse mortality (4% vs 14.4%) and disease progression (DP) (15.7% vs 31.1%) were lower in CTLA4Ig-DLI group (p = 0.04). GVHD and progression-free survival was significantly improved in the CTLA4Ig-DLI group (p = 0.001). The recovery of CD56dimNK cells, NKG2A-KIR + NK subsets and Tregs was significantly better in the CTLA4Ig-DLI group at all time points and memory T cells at day +90. Immune recovery in relation to DP showed distinct patterns, with T cell subsets in the DLI group and NKG2A-KIR+NK cells in CTLA4Ig-DLI group having favorable impact. CTLA4Ig-DLI was thus associated with an improved outcome, possibly on account of the distinct pattern of immune recovery shown with this novel approach.
Collapse
|
4
|
Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood 2020; 136:418-428. [PMID: 32526028 PMCID: PMC7378458 DOI: 10.1182/blood.2019000952] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is an important curative therapy for high-risk hematological malignancies, but the development of severe and/or steroid-refractory acute graft-versus-host disease (aGVHD) remains a significant limitation to optimal outcomes. New approaches to prevent and treat aGVHD remain an unmet need that can be best addressed by understanding the complex disease pathophysiology. It is now clear that chemoradiotherapy used prior to alloSCT induces the release of endogenous alarmins (eg, HMGB-1, ATP, IL-1α, IL-33) from recipient tissue. Exogenous pathogen-derived molecules (eg, lipopolysaccharide, nucleic acids) also translocate from the gastrointestinal tract lumen. Together, these danger signals activate antigen-presenting cells (APCs) to efficiently present alloantigen to donor T cells while releasing cytokines (eg, interleukin-12 [IL-12], IL-23, IL-6, IL-27, IL-10, transforming growth factor-β) that expand and differentiate both pathogenic and regulatory donor T cells. Concurrent costimulatory signals at the APC-T-cell interface (eg, CD80/CD86-CD28, CD40-CD40L, OX40L-OX40, CD155/CD112-DNAM-1) and subsequent coinhibitory signals (eg, CD80/CD86-CTLA4, PDL1/2-PD1, CD155/CD112-TIGIT) are critical to the acquisition of effector T-cell function and ensuing secretion of pathogenic cytokines (eg, IL-17, interferon-γ, tissue necrosis factor, granulocyte-macrophage colony-stimulating factor) and cytolytic degranulation pathway effectors (eg, perforin/granzyme). This review focuses on the combination of cytokine and costimulatory networks at the T-cell surface that culminates in effector function and subsequent aGVHD in target tissue. Together, these pathways now represent robust and clinically tractable targets for preventing the initiation of deleterious immunity after alloSCT.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| |
Collapse
|
5
|
Zhao Y, Zheng Q, Jin L. The Role of B7 Family Molecules in Maternal-Fetal Immunity. Front Immunol 2020; 11:458. [PMID: 32265918 PMCID: PMC7105612 DOI: 10.3389/fimmu.2020.00458] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/27/2020] [Indexed: 01/08/2023] Open
Abstract
Pregnancy is a complex but well-arranged process, and a healthy fetus requires immune privilege and surveillance in the presence of paternally derived antigens. Maternal and fetal cells interact at the maternal–fetal interface. The upregulation and downregulation of maternal immunity executed by the leukocyte population predominantly depend on the activity of decidual natural killer cells and trophoblasts and are further modulated by a series of duplex signals. The B7 family, which consists of B7-1, B7-2, B7-H1, B7-DC, B7-H2, B7-H3, B7-H4, B7-H5, BTNL2, B7-H6, and B7-H7, is one of the most characterized and widely distributed signaling molecule superfamilies and conducts both stimulatory and inhibitory signals through separate interactions. In particular, the roles of B7-1, B7-2, B7-H1, and their corresponding receptors in the progression of normal pregnancy and some pregnancy complications have been extensively studied. Together with the TCR–MHC complex, B7 and its receptors play a critical role in cell proliferation and cytokine secretion. Depending on this ligand–receptor crosstalk, the balance between the tolerance and rejection of the fetus is perfectly maintained. This review aims to provide an overview of the current knowledge of the B7 family and its functions in regulating maternal–fetal immunity through individual interactions.
Collapse
Affiliation(s)
- Yongbo Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingliang Zheng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Jin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Jaiswal SR, Chakrabarti S. CTLA4Ig Limits Both Incidence and Severity of Early Cytokine Release Syndrome following Haploidentical Peripheral Blood Stem Cell Transplantation. Biol Blood Marrow Transplant 2020; 26:e86-e87. [PMID: 31911258 DOI: 10.1016/j.bbmt.2019.12.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Sarita Rani Jaiswal
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, Kolkata, India; Department of Blood and Marrow Transplantation and Hematology, Dharamshila Narayana Superspeciality Hospital, New Delhi, India.
| | - Suparno Chakrabarti
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, Kolkata, India; Department of Blood and Marrow Transplantation and Hematology, Dharamshila Narayana Superspeciality Hospital, New Delhi, India
| |
Collapse
|