1
|
Wang C, Fu W, Zhang Y, Hu X, Xu Q, Tong X. C-MYC-activated lncRNA SNHG20 accelerates the proliferation of diffuse large B cell lymphoma via USP14-mediated deubiquitination of β-catenin. Biol Direct 2024; 19:47. [PMID: 38886753 PMCID: PMC11184854 DOI: 10.1186/s13062-024-00488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are implicated in the initiation and progression of diffuse large B-cell lymphoma (DLBCL). Small nucleolar RNA host gene 20 (SNHG20) has been recognized as a critical lncRNA in multiple human cancers. However, the role of SNHG20 and its underlying mechanism in DLBCL are still unclear. METHODS The expression levels of SNHG20, c-MYC, β-catenin, and ubiquitin-specific peptidase 14 (USP14) were measured by reverse transcription-quantitative polymerase chain reaction (RT‒qPCR) and immunoblotting. Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) incorporation, and flow cytometry assays were used to assess the proliferation and apoptosis of DLBCL cells. The transcriptional regulation of SNHG20 by c-MYC was confirmed by a luciferase reporter assay and RNA immunoprecipitation. The interaction between USP14 and β-catenin was demonstrated using coimmunoprecipitation. A subcutaneous xenograft model was constructed to determine the role of SNHG20 in vivo. RESULTS In the present study, we found that SNHG20 expression was upregulated in DLBCL cell lines and tissues compared to their normal counterparts. SNHG20 knockdown prominently reduced the proliferation and induced the apoptosis of U2932 and OCI-LY3 cells. However, SNHG20 overexpression increased the proliferation and apoptosis resistance of DLBCL cells. Mechanistically, the expression of SNHG20 was positively regulated by c-MYC in DLBCL cells. C-MYC directly bound to the promoter of SNHG20 to activate its transcription. SNHG20 was expressed mainly in the cytosol in DLBCL cells. SNHG20 silencing did not impact USP14 expression but markedly decreased the level of β-catenin, the substrate of USP14, in DLBCL cells. USP14 overexpression increased the β-catenin level, and this increase was attenuated by SNHG20 knockdown. Treatment with the proteasome inhibitor MG132 abolished SNHG20 knockdown-induced β-catenin downregulation. Moreover, SNHG20 silencing reduced the half-life but increased the ubiquitination of β-catenin in DLBCL cells. SNHG20 knockdown weakened the interaction between both endogenous and exogenous USP14 and β-catenin. In turn, SNHG20 overexpression increased the c-MYC level, and this increase was attenuated by β-catenin knockdown. Importantly, β-catenin knockdown attenuated the SNHG20-mediated increase in DLBCL cell proliferation in vitro and tumour growth in vivo. CONCLUSIONS Taken together, our results suggested that c-MYC-activated SNHG20 accelerated the proliferation and increased the apoptosis resistance of DLBCL cells via USP14-mediated deubiquitination of β-catenin. The c-MYC/SNHG20 positive feedback loop may be a new target for anti-DLBCL treatment.
Collapse
Affiliation(s)
- Chaoyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310000, China
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Wen Fu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Youju Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoge Hu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Xiangmin Tong
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Lin J, Wang L, Wu Y, Xiang Q, Zhao Y, Zheng X, Jiang S, Sun Z, Fan D, Li W. Involvement of DJ-1 in the pathogenesis of intervertebral disc degeneration via hexokinase 2-mediated mitophagy. Exp Mol Med 2024; 56:747-759. [PMID: 38531963 PMCID: PMC10984922 DOI: 10.1038/s12276-024-01196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 03/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is an important pathological basis for degenerative spinal diseases and is involved in mitophagy dysfunction. However, the molecular mechanisms underlying mitophagy regulation in IDD remain unclear. This study aimed to clarify the role of DJ-1 in regulating mitophagy during IDD pathogenesis. Here, we showed that the mitochondrial localization of DJ-1 in nucleus pulposus cells (NPCs) first increased and then decreased in response to oxidative stress. Subsequently, loss- and gain-of-function experiments revealed that overexpression of DJ-1 in NPCs inhibited oxidative stress-induced mitochondrial dysfunction and mitochondria-dependent apoptosis, whereas knockdown of DJ-1 had the opposite effect. Mechanistically, mitochondrial translocation of DJ-1 promoted the recruitment of hexokinase 2 (HK2) to damaged mitochondria by activating Akt and subsequently Parkin-dependent mitophagy to inhibit oxidative stress-induced apoptosis in NPCs. However, silencing Parkin, reducing mitochondrial recruitment of HK2, or inhibiting Akt activation suppressed DJ-1-mediated mitophagy. Furthermore, overexpression of DJ-1 ameliorated IDD in rats through HK2-mediated mitophagy. Taken together, these findings indicate that DJ-1 promotes HK2-mediated mitophagy under oxidative stress conditions to inhibit mitochondria-dependent apoptosis in NPCs and could be a therapeutic target for IDD.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Longjie Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yuhao Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qian Xiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xuanqi Zheng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Shuai Jiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhuoran Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
3
|
Jiang K, Bai L, Wang C, Xiao X, Cheng Z, Peng H, Liu S. The Aurora kinase inhibitor AT9283 inhibits Burkitt lymphoma growth by regulating Warburg effect. PeerJ 2023; 11:e16581. [PMID: 38099309 PMCID: PMC10720464 DOI: 10.7717/peerj.16581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To investigate the effect of the kinase inhibitor AT9283 on Burkitt lymphoma (BL) cells and elucidate the underlying mechanisms. Methods The effect of AT9283 on the proliferation of BL cell lines was tested using the MTT assay. Apoptosis and cell cycle were measured by flow cytometry. The proteins associated with the cell cycle, apoptosis, and the Warburg effect were detected using Western blotting. Alterations in glycolytic metabolism in terms of glucose intake and lactate concentrations were determined by glucose and lactate assays. Results The current study utilized the GEPIA, the Human Protein Atlas (HAP) database and immunohistochemistry to conduct analyses, which revealed a high expression of Aurora kinases and Warburg effect-related proteins in malignant B-cell lymphoma tissues. AT9283 significantly inhibited the cell proliferation of BL cells and induced G2/M arrest. Additionally, AT9283 induced apoptosis in BL cells and reversed the Warburg effect by increasing glucose uptake and reducing lactate production. Moreover, the protein expression of hexokinase 2, pyruvate kinase M2, and lactate dehydrogenase A was significantly suppressed by AT9283, possibly through the inhibition of c-Myc and HIF-1α protein expression. Conclusion The reversal of the Warburg effect in BL cells and the subsequent inhibition of cell proliferation and induction of apoptosis were observed by targeting Aurora A and Aurora B with AT9283. This finding may present new therapeutic options and targets for BL.
Collapse
Affiliation(s)
- Kaiming Jiang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihong Bai
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Canfei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Nakajima K, Suzuki M, Kawashima I, Koshiisi M, Kumagai T, Yamamoto T, Tanaka M, Kirito K. The chaperone protein GRP78 released from MPN cells increases the expression of lysyl oxidase in a human stromal cell line. Leuk Res 2023; 134:107389. [PMID: 37757654 DOI: 10.1016/j.leukres.2023.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Impaired function of the endoplasmic stress (ER) response causes numerous pathological conditions, including tissue fibrosis. In the present study, we aimed to determine the pathological role of ER stress response systems in myeloproliferative neoplasms (MPNs). We found increased expression of the chaperone protein glucose-regulated protein (GRP) 78, a central regulator of ER stress, in megakaryocytes from primary myelofibrosis or postessential thrombocythemia myelofibrosis patients. GRP78 was overexpressed in JAK2V617F-harboring cell lines; however, inhibitors of ER stress did not affect the expression levels of GRP78. In contrast, ruxolitinib, a well-known inhibitor of JAK2V617F, clearly blocked GRP78 expression in these cells through downregulation of transcription factor 4 (ATF4). Interestingly, GRP78 was secreted from HEL and SET-2 cells into culture media. Coculture of these cells with HS-5 cells, a human bone marrow stroma-derived cell line, induced enhanced expression of lysyl oxidase (LOX), which mediates cross-linking of collagen fibers and induces tissue fibrosis, in HS-5 cells. An anti-GRP78 neutralizing antibody abrogated LOX elevation; in contrast, recombinant GRP78 protein induced LOX protein expression in HS-5 cells. Our observations suggest that the oncogenic protein JAK2V617F induces overexpression and release of GRP78, which may induce a fibrotic phenotype in surrounding bone marrow stromal cells.
Collapse
Affiliation(s)
- Kei Nakajima
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Megumi Suzuki
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Ichiro Kawashima
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Megumi Koshiisi
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Takuma Kumagai
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Takeo Yamamoto
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Masaru Tanaka
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Keita Kirito
- Department of Hematology/Oncology, University of Yamanashi, Japan.
| |
Collapse
|
5
|
Zhao H, Xiang G, Shao T, Wang M, Dai W. HK2 contributes to the proliferation, migration, and invasion of diffuse large B-cell lymphoma cells by enhancing the ERK1/2 signaling pathway. Open Life Sci 2023; 18:20220726. [PMID: 37854321 PMCID: PMC10579878 DOI: 10.1515/biol-2022-0726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 08/19/2023] [Indexed: 10/20/2023] Open
Abstract
Hexokinase 2 (HK2) has been associated with carcinogenic growth in numerous kinds of malignancies as essential regulators during the processing of glucose. This study aimed to explore the effects of HK2 on diffuse large B-cell lymphoma (DLBCL) cells via the ERK1/2 signaling. Expressions of HK2 and ERK1/2 were examined in DLBCL cell lines using quantitative reverse transcription polymerase chain reaction and western blotting. HK2 and ERK1/2 were attenuated through HK2 small-interfering RNA (siRNA) and ERK inhibitor FR180204, respectively, in U2932 and SU-DHL-4 cells. Cell Counting Kit-8, clone formation, transwell, and flow cytometry assays were used in evaluating the effects of HK2 and ERK1/2 on cell proliferation, migration, and apoptosis. Moreover, a xenograft model was created to assess the roles of HK2 in vivo. HK2 and ERK1/2 were evidently up-regulated in DLBCL cell lines. HK2 knockdown and FR180204 markedly suppressed the proliferation and clonogenesis of U2932 and SU-DHL-4 cells and promoted cell apoptosis in vitro. We also found that HK2 silencing suppressed tumor growth in vivo. Notably, HK2 knockdown inactivated the ERK1/2 signaling pathway both in vitro and in vivo. These data indicate that inhibition of HK2 may suppress the proliferation, migration, and invasion of DLBCL cells, partly via inhibiting the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Hongcan Zhao
- Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Shangcheng District, Zhejiang, China
| | - Guoqian Xiang
- Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Shangcheng District, Zhejiang, China
| | - Tingjun Shao
- Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Shangcheng District, Zhejiang, China
| | - Minmin Wang
- Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Shangcheng District, Zhejiang, China
| | - Weijian Dai
- Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Shangcheng District, Zhejiang, China
| |
Collapse
|
6
|
Al-Hussan R, Albadr NA, Alshammari GM, Almasri SA, Yahya MA. Phloretamide Prevent Hepatic and Pancreatic Damage in Diabetic Male Rats by Modulating Nrf2 and NF-κB. Nutrients 2023; 15:nu15061456. [PMID: 36986192 PMCID: PMC10059022 DOI: 10.3390/nu15061456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
This study examined the effect of phloretamide, a metabolite of phloretin, on liver damage and steatosis in streptozotocin-induced diabetes mellitus (DM) in rats. Adult male rats were divided into two groups: control (nondiabetic) and STZ-treated rats, each of which was further treated orally with the vehicle phloretamide 100 mg or 200 mg. Treatments were conducted for 12 weeks. Phloretamide, at both doses, significantly attenuated STZ-mediated pancreatic β-cell damage, reduced fasting glucose, and stimulated fasting insulin levels in STZ-treated rats. It also increased the levels of hexokinase, which coincided with a significant reduction in glucose-6 phosphatase (G-6-Pase), and fructose-1,6-bisphosphatase 1 (PBP1) in the livers of these diabetic rats. Concomitantly, both doses of phloretamide reduced hepatic and serum levels of triglycerides (TGs) and cholesterol (CHOL), serum levels of low-density lipoprotein cholesterol (LDL-c), and hepatic ballooning. Furthermore, they reduced levels of lipid peroxidation, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), mRNA, and total and nuclear levels of NF-κB p65, but increased mRNA levels, total and nuclear levels of Nrf2, as well as levels of reduced glutathione (GSH), superoxide dismutase (SOD-1), catalase (CAT), and heme-oxygenase-1 (HO-1) in the livers of diabetic rats. All of these effects were dose-dependent. In conclusion, phloretamide is a novel drug that could ameliorate DM-associated hepatic steatosis via its powerful antioxidant and anti-inflammatory effects. Mechanisms of protection involve improving the β-cell structure and hepatic insulin action, suppressing hepatic NF-κB, and stimulating hepatic Nrf2.
Collapse
|
7
|
Pang Y, Lu T, Xu-Monette ZY, Young KH. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma. Int J Mol Sci 2023; 24:5493. [PMID: 36982568 PMCID: PMC10052731 DOI: 10.3390/ijms24065493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Lymphoma is a heterogeneous group of diseases that often require their metabolism program to fulfill the demand of cell proliferation. Features of metabolism in lymphoma cells include high glucose uptake, deregulated expression of enzymes related to glycolysis, dual capacity for glycolytic and oxidative metabolism, elevated glutamine metabolism, and fatty acid synthesis. These aberrant metabolic changes lead to tumorigenesis, disease progression, and resistance to lymphoma chemotherapy. This metabolic reprogramming, including glucose, nucleic acid, fatty acid, and amino acid metabolism, is a dynamic process caused not only by genetic and epigenetic changes, but also by changes in the microenvironment affected by viral infections. Notably, some critical metabolic enzymes and metabolites may play vital roles in lymphomagenesis and progression. Recent studies have uncovered that metabolic pathways might have clinical impacts on the diagnosis, characterization, and treatment of lymphoma subtypes. However, determining the clinical relevance of biomarkers and therapeutic targets related to lymphoma metabolism is still challenging. In this review, we systematically summarize current studies on metabolism reprogramming in lymphoma, and we mainly focus on disorders of glucose, amino acids, and lipid metabolisms, as well as dysregulation of molecules in metabolic pathways, oncometabolites, and potential metabolic biomarkers. We then discuss strategies directly or indirectly for those potential therapeutic targets. Finally, we prospect the future directions of lymphoma treatment on metabolic reprogramming.
Collapse
Affiliation(s)
- Yuyang Pang
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Hematology, Ninth People’s Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Tingxun Lu
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Zijun Y. Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
8
|
Tannoury M, Garnier D, Susin SA, Bauvois B. Current Status of Novel Agents for the Treatment of B Cell Malignancies: What's Coming Next? Cancers (Basel) 2022; 14:6026. [PMID: 36551511 PMCID: PMC9775488 DOI: 10.3390/cancers14246026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Resistance to death is one of the hallmarks of human B cell malignancies and often contributes to the lack of a lasting response to today's commonly used treatments. Drug discovery approaches designed to activate the death machinery have generated a large number of inhibitors of anti-apoptotic proteins from the B-cell lymphoma/leukemia 2 family and the B-cell receptor (BCR) signaling pathway. Orally administered small-molecule inhibitors of Bcl-2 protein and BCR partners (e.g., Bruton's tyrosine kinase and phosphatidylinositol-3 kinase) have already been included (as monotherapies or combination therapies) in the standard of care for selected B cell malignancies. Agonistic monoclonal antibodies and their derivatives (antibody-drug conjugates, antibody-radioisotope conjugates, bispecific T cell engagers, and chimeric antigen receptor-modified T cells) targeting tumor-associated antigens (TAAs, such as CD19, CD20, CD22, and CD38) are indicated for treatment (as monotherapies or combination therapies) of patients with B cell tumors. However, given that some patients are either refractory to current therapies or relapse after treatment, novel therapeutic strategies are needed. Here, we review current strategies for managing B cell malignancies, with a focus on the ongoing clinical development of more effective, selective drugs targeting these molecules, as well as other TAAs and signaling proteins. The observed impact of metabolic reprogramming on B cell pathophysiology highlights the promise of targeting metabolic checkpoints in the treatment of these disorders.
Collapse
Affiliation(s)
| | | | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| |
Collapse
|
9
|
Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches. Pharmaceutics 2022; 14:pharmaceutics14061303. [PMID: 35745875 PMCID: PMC9227908 DOI: 10.3390/pharmaceutics14061303] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The constant changes in cancer cell bioenergetics are widely known as metabolic reprogramming. Reprogramming is a process mediated by multiple factors, including oncogenes, growth factors, hypoxia-induced factors, and the loss of suppressor gene function, which support malignant transformation and tumor development in addition to cell heterogeneity. Consequently, this hallmark promotes resistance to conventional anti-tumor therapies by adapting to the drastic changes in the nutrient microenvironment that these therapies entail. Therefore, it represents a revolutionary landscape during cancer progression that could be useful for developing new and improved therapeutic strategies targeting alterations in cancer cell metabolism, such as the deregulated mTOR and PI3K pathways. Understanding the complex interactions of the underlying mechanisms of metabolic reprogramming during cancer initiation and progression is an active study field. Recently, novel approaches are being used to effectively battle and eliminate malignant cells. These include biguanides, mTOR inhibitors, glutaminase inhibition, and ion channels as drug targets. This review aims to provide a general overview of metabolic reprogramming, summarise recent progress in this field, and emphasize its use as an effective therapeutic target against cancer.
Collapse
|
10
|
Jin J, Gui A, Chen G, Liu Y, Xia Z, Liu X, Lv F, Cao J, Hong X, Yang L, Gu JJ, Zhang Q. Hexokinase II expression as a prognostic marker in diffuse large B-cell lymphoma: pre- and post-rituximab era. Int J Hematol 2022; 116:372-380. [PMID: 35536508 DOI: 10.1007/s12185-022-03358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
We aimed to assess HKII expression and its prognostic significance in diffuse large B-cell lymphoma (DLBCL) patients. The HKII protein level was determined by immunohistochemistry in 159 newly diagnosed DLBCL patients, and its relationship with overall response rate, progression-free survival (PFS), and overall survival (OS) was analyzed. HKII was expressed in 95 DLBCL patients (59.7%). HKII-positive patients had poorer outcomes than negative patients for 5-y PFS (68% vs. 84%, p = 0.029) and 5-y OS (78% vs. 94%, p = 0.05). When only patients without no bulky disease, B symptoms, or extranodal involvement who had low IPI scores were considered, those with positive HKII had worse 5y-PFS and 5y-OS (p < 0.05). Multivariate analysis indicated that HKII status was an independent prognostic factor of OS. In subgroup analysis, HKII expression was associated with inferior OS in the CHOP group (p = 0.017). In CHOP group patients without bulky disease or extranodal involvement who had low LDH and low IPI scores (p < 0.05), positive HKII was associated with worse PFS and OS. No differences in PFS and OS, or any independent prognostic factors, were found in the RCHOP group. In DLBCL, HKII is valuable as a prognostic biomarker and may be useful as a tool for assessing disease risk.
Collapse
Affiliation(s)
- Jia Jin
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ailing Gui
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guangliang Chen
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yizhen Liu
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zuguang Xia
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaojian Liu
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fangfang Lv
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Junning Cao
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaonan Hong
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Juan J Gu
- Oncology Department, Northern Jiangsu People's Hospital, Yangzhou, 255000, Jiangsu Province, China. .,Cancer Institute Affiliated to Northern Jiangsu People's Hospital, Yangzhou, 255000, Jiangsu Province, China. .,Medical College, Yangzhou University, Cancer Institute Affiliated to Subei People's Hospital, No. 88 Nantong West Road, Yangzhou, 255000, Jiangsu Province, China.
| | - Qunling Zhang
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Das D, Karthik N, Taneja R. Epigenetic Small-Molecule Modulators Targeting Metabolic Pathways in Cancer. Subcell Biochem 2022; 100:523-555. [PMID: 36301505 DOI: 10.1007/978-3-031-07634-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic deregulation is a key factor in cancer progression. Epigenetic changes and metabolic rewiring are intertwined in cancer. Deregulated epigenetic modifiers cause metabolic aberrations by targeting the expression of metabolic enzymes. Conversely, metabolites and cofactors affect the expression and activity of epigenetic regulators. Small molecules are promising therapeutic approaches to target the epigenetic-metabolomic crosstalk in cancer. Here, we focus on the interplay between metabolic rewiring and epigenetic landscape in the context of tumourigenesis and highlight recent advances in the use of small-molecule drug targets for therapy.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Maggi F, Morelli MB, Tomassoni D, Marinelli O, Aguzzi C, Zeppa L, Nabissi M, Santoni G, Amantini C. The effects of cannabidiol via TRPV2 channel in chronic myeloid leukemia cells and its combination with imatinib. Cancer Sci 2021; 113:1235-1249. [PMID: 34971020 PMCID: PMC8990867 DOI: 10.1111/cas.15257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by accumulation of immature cells in bone marrow and peripheral blood. Although successful results were obtained with tyrosine kinase inhibitors, several patients showed resistance. For this reason, the identification of new strategies and therapeutic biomarkers represents an attractive goal. The role of transient receptor potential (TRP) ion channels as possible drug targets has been elucidated in different types of cancer. Among natural compounds known to activate TRPs, cannabidiol (CBD) displays anticancer properties. By using FACS analysis, confocal microscopy, gene silencing, and cell growth assay, we demonstrated that CBD, through TRPV2, inhibits cell proliferation and cell cycle in CML cells. It promoted mitochondria dysfunction and mitophagy as shown by mitochondrial mass reduction and up‐regulation of several mitophagy markers. These effects were associated with changes in the expression of octamer‐binding transcription factor 4 and PU.1 markers regulated during cellular differentiation. Interestingly, a synergistic effect by combining CBD with the standard drug imatinib was found and imatinib‐resistant cells remain susceptible to CBD effects. Therefore, the targeting of TRPV2 by using CBD, through the activation of mitophagy and the reduction in stemness, could be a promising strategy to enhance conventional therapy and improve the prognosis of CML patients.
Collapse
Affiliation(s)
- Federica Maggi
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Cristina Aguzzi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Laura Zeppa
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
13
|
Antidiabetic effect of konjac glucomannan via insulin signaling pathway regulation in high-fat diet and streptozotocin-induced diabetic rats. Food Res Int 2021; 149:110664. [PMID: 34600666 DOI: 10.1016/j.foodres.2021.110664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes mellitus is a chronic metabolic disorder that tends to disarray various metabolic pathways. Dietary-mediated T2DM prevention garners much attention in recent decades. Hence, this study was intended to elucidate the antidiabetic properties of Konjac glucomannan (KGM) in diabetic rats. Our experimental design includes five groups, with six rats in each group. Group 1 feeding standard diet pallet alone served as control rats; group 2 was KGM control rats administered intragastrically with KGM (120 mg/kg b.w.). Group 3 was developed as diabetic rats with a high-fat diet and an intraperitoneal injection of Streptozotocin-40 mg/kg b.w. Group 4 were diabetic rats treated with KGM (80 mg/kg b.w.), and group 5 were diabetic rats received rosiglitazone treatment (4 mg/kg b.w.). The results showed that STZ-induced diabetic rats significantly elevate liver marker enzymes and gluconeogenesis enzymes. Diminished glycolytic enzymes, liver glycogen, insulin signaling genes, and proteins were also seen in diabetic rats. Treatment with KGM augmented glycolytic enzymes and liver glycogen. On the other hand, KGM diminished gluconeogenesis, liver marker enzymes, upregulated gene, and protein expression of the insulin pathway. The current results suggest dietary KGM can offer a better health benefit in the treatment of T2DM.
Collapse
|
14
|
Regulation of humoral immune response by HIF-1α-dependent metabolic reprogramming of the germinal center reaction. Cell Immunol 2021; 367:104409. [PMID: 34246872 DOI: 10.1016/j.cellimm.2021.104409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the regulation of many genes responsible for aerobic glycolysis; however, the role of HIF-1α in B-cell metabolism has not been well defined. Here, we analyzed patterns of gene expression and oxygen consumption rates in B-cell subpopulations from humans and mice and described a model of HIF-1α-mediated B-cell metabolic reprogramming during the germinal center (GC) reaction. Importantly, we found that HIF-1α was highly expressed in GC B-cells, and HIF-1α deficiency in B-cells impaired a functional GC reaction, resulting in defective class-switch recombination and generation of high-affinity plasma cells. These results identified an important role of HIF-1α in regulating humoral immunity through metabolic reprogramming during the GC response. This newly discovered metabolic character of GC B-cells will advance our understanding of GC biology and B-cell lymphomagenesis.
Collapse
|
15
|
Zhou KL, Zhu ZH, Zhou JP, Zhao JJ, Zhang Y, Jiang B. Increased hexokinase-2 as a novel biomarker for the diagnosis and correlating with disease severity in rheumatoid arthritis. Medicine (Baltimore) 2021; 100:e26504. [PMID: 34160468 PMCID: PMC8238366 DOI: 10.1097/md.0000000000026504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Abnormal glucose metabolism brings out joint inflammation and destruction in rheumatoid arthritis (RA). The aim of this study was to evaluate the potential of circulating hexokinase-2 (HK2) in peripheral blood mononuclear cells (PBMCs) of rheumatoid arthritis (RA) patients.PBMCs were obtained from patients with RA or osteoarthritis (OA) and healthy controls (HCs). The expression of HK2 was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR), Calprotectin, rheumatoid factor (RF), anti-cyclic citrullinated peptides (anti-CCP) antibody level and 28-joint Disease Activity Score (DAS28), Clinical Disease Activity Index (CDAI) and Simplified Disease Activity Index (SDAI) were measured. Spearman's analysis was performed to determine the association between the level of HK2 and clinical characteristics. A receiver operating characteristic (ROC) curve was employed to evaluate the diagnostic value of HK2 in PBMCs. Logistic regression was used to identify risk factors. Sixty-five RA patients, 35 OA patients, and 40 HCs were included in the study.HK2 was upregulated in RA and OA patients compared with that in HCs (P < .05). The area under the ROC of HK2 for diagnosing RA and OA was 0.808 and 0.640, respectively. In addition, HK2 levels were increased in active RA compared with those in remittent RA (P = .03). Furthermore, HK2 correlated positively with the DAS28-ESR (P < .001), CDAI (P = .02) and SDAI scores (P = .02). Moreover, HK2 was independently associated with an increased risk of disease activity (DAS28-ESR>3.2, P = .02; CDAI score>10, P = .03; SDAI score>11, P = .04). Additionally, HK2 positivity was more frequently detected in patients treated with biologic disease-modifying antirheumatic drugs (bDMARDs) than in those not treated with bDMARDs.HK2 levels in PBMCs can be considered an ideal biomarker for diagnosing RA and involved in disease activity in RA. Dysregulation of HK2 may participate in the molecular mechanism of RA and could be an attractive selective metabolic target for RA treatment.
Collapse
|
16
|
Lizárraga D, García-Gasca A. The Placenta as a Target of Epigenetic Alterations in Women with Gestational Diabetes Mellitus and Potential Implications for the Offspring. EPIGENOMES 2021; 5:epigenomes5020013. [PMID: 34968300 PMCID: PMC8594713 DOI: 10.3390/epigenomes5020013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a pregnancy complication first detected in the second or third trimester in women that did not show evident glucose intolerance or diabetes before gestation. In 2019, the International Diabetes Federation reported that 15.8% of live births were affected by hyperglycemia during pregnancy, of which 83.6% were due to gestational diabetes mellitus, 8.5% were due to diabetes first detected in pregnancy, and 7.9% were due to diabetes detected before pregnancy. GDM increases the susceptibility to developing chronic diseases for both the mother and the baby later in life. Under GDM conditions, the intrauterine environment becomes hyperglycemic, while also showing high concentrations of fatty acids and proinflammatory cytokines, producing morphological, structural, and molecular modifications in the placenta, affecting its function; these alterations may predispose the baby to disease in adult life. Molecular alterations include epigenetic mechanisms such as DNA and RNA methylation, chromatin remodeling, histone modifications, and expression of noncoding RNAs (ncRNAs). The placenta is a unique organ that originates only in pregnancy, and its main function is communication between the mother and the fetus, ensuring healthy development. Thus, this review provides up-to-date information regarding two of the best-documented (epigenetic) mechanisms (DNA methylation and miRNA expression) altered in the human placenta under GDM conditions, as well as potential implications for the offspring.
Collapse
|
17
|
Barbato A, Scandura G, Puglisi F, Cambria D, La Spina E, Palumbo GA, Lazzarino G, Tibullo D, Di Raimondo F, Giallongo C, Romano A. Mitochondrial Bioenergetics at the Onset of Drug Resistance in Hematological Malignancies: An Overview. Front Oncol 2020; 10:604143. [PMID: 33409153 PMCID: PMC7779674 DOI: 10.3389/fonc.2020.604143] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The combined derangements in mitochondria network, function and dynamics can affect metabolism and ATP production, redox homeostasis and apoptosis triggering, contributing to cancer development in many different complex ways. In hematological malignancies, there is a strong relationship between cellular metabolism, mitochondrial bioenergetics, interconnections with supportive microenvironment and drug resistance. Lymphoma and chronic lymphocytic leukemia cells, e.g., adapt to intrinsic oxidative stress by increasing mitochondrial biogenesis. In other hematological disorders such as myeloma, on the contrary, bioenergetics changes, associated to increased mitochondrial fitness, derive from the adaptive response to drug-induced stress. In the bone marrow niche, a reverse Warburg effect has been recently described, consisting in metabolic changes occurring in stromal cells in the attempt to metabolically support adjacent cancer cells. Moreover, a physiological dynamic, based on mitochondria transfer, between tumor cells and their supporting stromal microenvironment has been described to sustain oxidative stress associated to proteostasis maintenance in multiple myeloma and leukemia. Increased mitochondrial biogenesis of tumor cells associated to acquisition of new mitochondria transferred by mesenchymal stromal cells results in augmented ATP production through increased oxidative phosphorylation (OX-PHOS), higher drug resistance, and resurgence after treatment. Accordingly, targeting mitochondrial biogenesis, electron transfer, mitochondrial DNA replication, or mitochondrial fatty acid transport increases therapy efficacy. In this review, we summarize selected examples of the mitochondrial derangements in hematological malignancies, which provide metabolic adaptation and apoptosis resistance, also supported by the crosstalk with tumor microenvironment. This field promises a rational design to improve target-therapy including the metabolic phenotype.
Collapse
Affiliation(s)
- Alessandro Barbato
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Puglisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giacomo Lazzarino
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Daniele Tibullo
- Department of Biotechnological and Biomedical Sciences, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Li Y, Sun XX, Qian DZ, Dai MS. Molecular Crosstalk Between MYC and HIF in Cancer. Front Cell Dev Biol 2020; 8:590576. [PMID: 33251216 PMCID: PMC7676913 DOI: 10.3389/fcell.2020.590576] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) is a global regulator of gene expression. It is overexpressed or deregulated in human cancers of diverse origins and plays a key role in the development of cancers. Hypoxia-inducible factors (HIFs), a central regulator for cells to adapt to low cellular oxygen levels, is also often overexpressed and activated in many human cancers. HIF mediates the primary transcriptional response of a wide range of genes in response to hypoxia. Earlier studies focused on the inhibition of MYC by HIF during hypoxia, when MYC is expressed at physiological level, to help cells survive under low oxygen conditions. Emerging evidence suggests that MYC and HIF also cooperate to promote cancer cell growth and progression. This review will summarize the current understanding of the complex molecular interplay between MYC and HIF.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - David Z Qian
- The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States.,The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
19
|
Li P, Lv H, Xu M, Zang B, Ma Y. ARHGAP6 Promotes Apoptosis and Inhibits Glycolysis in Lung Adenocarcinoma Through STAT3 Signaling Pathway. Cancer Manag Res 2020; 12:9665-9678. [PMID: 33116826 PMCID: PMC7547783 DOI: 10.2147/cmar.s257759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
Objective Constitutively activated signal transducer and activator of transcription 3 (STAT3) has been linked to cisplatin (DDP)-resistance in a wide range of cancers. Recent work has indicated that Rho GTPase-activating protein 6 (ARHGAP6) promotes cell cycle arrest and apoptosis in cervical and breast cancers. However, the role of ARHGAP6 in lung adenocarcinoma and DDP-resistance remains unknown. Materials and Methods Bioinformatic analysis, quantitative RT-PCR and IHC staining were used to explore ARHGAP6 expression patterns in The Cancer Genome Atlas (TCGA) dataset and patient samples. Statistical analysis was performed to establish the association of ARHGAP6 expression with the resistance to DDP-based chemotherapy in lung adenocarcinoma patients. Functional assays were then conducted to examine the effect of ARHGAP6 on the apoptosis and glycolysis in DDP-resistant/sensitive A549/DPP cells in vitro. Finally, the effects of ARHGAP6 on the chemosensitivity of DDP were explored in vivo. Results We show that decreased ARHGAP6 levels are a reliable marker of lung adenocarcinoma across published datasets, cell culture lines, and clinical samples. Low ARHGAP6 expression was linked to decreased apoptosis and increased metabolic activity, which highlights ARHGAP6’s role as a tumor suppressor. Furthermore, activated p-STAT3 levels increased dramatically in the absence of ARHGAP6, which suggests that ARHGAP6 can inhibit the STAT3 pathway. In agreement with previous studies that linked p-STAT3 levels to DDP-resistance, our in vitro and in vivo data indicate that tumors became more resistant to DDP-therapy with reduced ARHGAP6 levels and an associated increase in p-STAT3. Conclusion ARHGAP6 presents a novel study target for overcoming p-STAT3-associated DDP-resistance in lung adenocarcinoma and potentially other cancers.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Min Xu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Bin Zang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Yegang Ma
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| |
Collapse
|
20
|
Chen J, Wu D, Dong Z, Chen A, Liu S. The expression and role of glycolysis-associated molecules in infantile hemangioma. Life Sci 2020; 259:118215. [PMID: 32768579 DOI: 10.1016/j.lfs.2020.118215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023]
Abstract
AIMS Infantile hemangioma (IH) is one of the most common tumors in infancy, which etiology and pathogenesis has not been fully elucidated, hypoxia and abnormal glucose metabolism is regarded as critical pathogenic factors. This study investigated the expression and function of glycolysis-associated molecules (GLUT1, HK2, PFKFB3, PKM2, and LDHA) under normoxic and hypoxic conditions to further understand the pathogenesis of IH. MAIN METHODS Hemangioma-derived endothelial cells (HemECs) were isolated from proliferating phase infantile hemangiomas and identified by immunofluorescence. HemECs and human umbilical vein endothelial cells (HUVECs) were cultured under normoxic and hypoxic conditions. RNA and protein expression of glycolysis-associated molecules were analyzed by quantitative real-time RT-PCR, western blotting, and immunohistochemistry. Glucose consumption, ATP production and lactate production were measured. Glycolysis-associated molecules were inhibited by WZB117, 3BP, 3PO, SKN, and GSK 2837808A and the resulting effects on HemECs proliferation, migration, and tube formation were quantified. KEY FINDINGS Glycolysis-associated molecules were highly expressed at both mRNA and protein levels in HemECs compared with HUVECs (P < 0.05). Glucose consumption and ATP production were higher in HemECs than in HUVECs, while lactate production in HemECs was lower than in HUVECs (P < 0.05). Inhibition of some glycolysis-associated molecules reduced the proliferation, migration, and tube formation capacity of HemECs (P < 0.05). SIGNIFICANCE Our study revealed that glycolysis-associated molecules were highly expressed in IH. Glucose metabolismin HemECs differed from normal endothelial cells. Altering the expression of glycolysis-associated molecules may influence the phenotype of HemECs and provide new therapeutic approaches to the successful treatment of IH.
Collapse
Affiliation(s)
- Jian Chen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University, Jinan, Shandong 250012, China
| | - Dan Wu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University, Jinan, Shandong 250012, China
| | - Zuoqing Dong
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University, Jinan, Shandong 250012, China
| | - Anwei Chen
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University, Jinan, Shandong 250012, China
| | - Shaohua Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|