1
|
Carlos JAEG, Tavares MT, Lima K, de Almeida LC, de Barros Waitman K, Costa-Lotufo LV, Parise-Filho R, Machado-Neto JA. Enhancing venetoclax efficacy in leukemia through association with HDAC inhibitors. Cell Death Discov 2025; 11:147. [PMID: 40188101 PMCID: PMC11972356 DOI: 10.1038/s41420-025-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Epigenetic modifications significantly influence gene expression and play crucial roles in various biological processes, including carcinogenesis. This study investigates the effects of novel purine-benzohydroxamate compounds, particularly 4 f, as hybrid kinase/histone deacetylase (HDAC) inhibitors in hematological malignancies, focusing on acute myeloid leukemia (AML). Our results demonstrate that these compounds selectively reduce cell viability in blood cancer cells, with inhibitory concentration values indicating higher potency against neoplastic cells compared to normal leukocytes. Mechanistically, 4 f induces apoptosis and cell cycle arrest, promoting differentiation in leukemia cells, while effectively inhibiting HDAC activity. Furthermore, 4 f enhances the therapeutic efficacy of venetoclax, a BCL2 inhibitor, in AML models sensitive and resistant to this drug. The combination treatment significantly increases apoptosis and reduces cell viability, suggesting a synergistic effect that may overcome drug resistance. This study provides valuable insights into the potential of HDAC inhibitors, particularly 4 f, as a promising therapeutic strategy for treating resistant hematological malignancies. Our findings underscore the importance of further exploring hybrid kinase/HDAC inhibitors in combination therapies to improve outcomes in patients with acute leukemias and other hematological malignancies.
Collapse
Affiliation(s)
| | - Mauricio Temotheo Tavares
- Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Komatsu S, Misaki H, Zhu W, Yamaguchi H, Hitachi K, Tsuchida K, Higashitani A. The Growth of Soybean ( Glycine max) Under Salt Stress Is Modulated in Simulated Microgravity Conditions. Cells 2025; 14:541. [PMID: 40214494 PMCID: PMC11988762 DOI: 10.3390/cells14070541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
The role of a simulated microgravity environment on soybean growth was investigated. The root grew more under simulated microgravity conditions than in the presence of gravity. However, root shortening due to salt stress did not occur in simulated microgravity conditions. To reveal these mechanisms by simulated microgravity environment on soybean root, a proteomic analysis was conducted. Proteomic analysis revealed that among 1547 proteins, the abundances of proteins related to phytohormone, oxidative stress, ubiquitin/proteasome system, cell organization, and cell wall organization were altered under stimulated microgravity compared with gravity. Membrane-localized proteins and redox-related proteins were inversely correlated in protein numbers due to salt stress under gravity and the simulated microgravity condition. Proteins identified by proteomics were validated for protein accumulation by immunoblot analysis. Superoxide dismutase and ascorbate peroxidases, which are reactive oxygen species-scavenging proteins, increased in soybean root under salt stress but not in the simulated microgravity conditions even under stress. The accumulation of 45 kDa aquaporin and 70 kDa calnexin in soybean root under salt stress were increased in the simulated microgravity conditions compared to gravity. These findings suggest that soybean growth under salt stress may be regulated through improved water permeability, mitigation of reactive oxygen species production, and restoration of protein folding under simulated microgravity conditions.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Haruka Misaki
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Wei Zhu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, China;
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan (K.T.)
| | - Kunihiro Tsuchida
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan (K.T.)
| | | |
Collapse
|
3
|
Li PP, Zhou YY, Gao L, Lv JN, Xu SS, Zhao YW, Xu D, Huang R, Zhang X, Li P, Fu X, He Z. The de novo missense mutation F224S in GABRB2, identified in epileptic encephalopathy and developmental delay, impairs GABA AR function. Neuroscience 2024; 553:172-184. [PMID: 38964454 DOI: 10.1016/j.neuroscience.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Genetic variants in genes encoding subunits of the γ-aminobutyric acid-A receptor (GABAAR) have been found to cause neurodevelopmental disorders and epileptic encephalopathy. In a patient with epilepsy and developmental delay, a de novo heterozygous missense mutation c.671 T > C (p.F224S) was discovered in the GABRB2 gene, which encodes the β2 subunit of GABAAR. Based on previous studies on GABRB2 variants, this new GABRB2 variant (F224S) would be pathogenic. To confirm and investigate the effects of this GABRB2 mutation on GABAAR channel function, we conducted transient expression experiments using GABAAR subunits in HEK293T cells. The GABAARs containing mutant β2 (F224S) subunit showed poor trafficking to the cell membrane, while the expression and distribution of the normal α1 and γ2 subunits were unaffected. Furthermore, the peak current amplitude of the GABAAR containing the β2 (F224S) subunit was significantly smaller compared to the wild type GABAAR. We propose that GABRB2 variant F224S is pathogenic and GABAARs containing this β2 mutant reduce response to GABA under physiological conditions, which could potentially disrupt the excitation/inhibition balance in the brain, leading to epilepsy.
Collapse
Affiliation(s)
- Ping-Ping Li
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yue-Yuan Zhou
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Li Gao
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jia-Nan Lv
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shi-Shi Xu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yan-Wen Zhao
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Di Xu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ruoke Huang
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peijun Li
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Xiaoqin Fu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zhiyong He
- Department of Pediatric Rehabilitation, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
4
|
Nieto Y, Yang Z, Valdez BC, Kundu S, Bashir Q, Ramdial J, Srour S, Qazilbash M. Safety and efficacy of a new high-dose regimen of panobinostat, gemcitabine, busulfan, and melphalan for 1st or 2nd salvage ASCT for refractory/relapsed or high-risk myeloma: Matched-pair comparisons with concurrent control cohorts. Am J Hematol 2024; 99:245-253. [PMID: 38100199 PMCID: PMC11849400 DOI: 10.1002/ajh.27168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 01/21/2024]
Abstract
Improvement of autologous stem-cell transplantation (ASCT) for myeloma is needed. Building on our prior work, we prospectively evaluated panobinostat and gemcitabine/busulfan/melphalan (GemBuMel) with ASCT in this population. Patients aged 18-65 years with relapsed/refractory or high-risk myeloma and adequate end-organ function were eligible. Treatment included panobinostat (20 mg/day, days -9 to -2) and GemBuMel (days -8 to -2). Patients were enrolled in 1st (ASCT-1) or 2nd ASCT (ASCT-2) cohorts. We compared their outcomes with all our other concurrent ASCT patients who met eligibility criteria but received melphalan or BuMel off study, matched for age, prior therapy lines, high-risk cytogenetics, and response at ASCT. We enrolled 80 patients, 48 and 32 in the ASCT-1 and ASCT-2 cohorts, respectively; in these two cohorts, high-risk cytogenetics were noted in 33 and 15 patients, respectively; unresponsive disease in 12 and 11 patients, respectively, after a median of 2 and 3 therapy lines, respectively. Transplant-related mortality (TRM) occurred in two ASCT-2 patients. One-year PFS rates were 69% (ASCT-1) and 72% (ASCT-2); 1-year OS rates were 79% (ASCT-1) and 84% (ASCT-2). Minimal residual disease negativity improved after ASCT-1 (8.5%-23%, p < .0001) and ASCT-2 (34%-55%, p = .02), which correlated with improved outcomes. Trial patients and controls (N = 371) had similar TRM and post-ASCT maintenance. Trial patients had better PFS after either a 1st (p = .02) or a 2nd ASCT (p = .04) than matched-paired control patients. In conclusion, panobinostat/GemBuMel is effective for relapsed/refractory or high-risk myeloma patients, with better PFS than concurrent matched controls receiving melphalan or BuMel.
Collapse
Affiliation(s)
- Yago Nieto
- Departments of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center
| | - Zixi Yang
- Biostatistics, The University of Texas MD Anderson Cancer Center
| | - Benigno C Valdez
- Departments of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center
| | - Suprateek Kundu
- Biostatistics, The University of Texas MD Anderson Cancer Center
| | - Qaiser Bashir
- Departments of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center
| | - Jeremy Ramdial
- Departments of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center
| | - Samer Srour
- Departments of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center
| | - Muzaffar Qazilbash
- Departments of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
5
|
Valdez BC, Yuan B, Murray D, Ramdial JL, Nieto Y, Popat U, Tang X, Andersson BS. Synergistic cytotoxicity of fludarabine, clofarabine, busulfan, vorinostat and olaparib in AML cells. Front Oncol 2023; 13:1287444. [PMID: 38074694 PMCID: PMC10701888 DOI: 10.3389/fonc.2023.1287444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 02/12/2024] Open
Abstract
Combinations of nucleoside analog(s) and DNA alkylating agent(s) are used for cancer treatment as components of pre-transplant regimens used in hematopoietic stem cell transplantation. Their efficacies are enhanced by combining drugs with different mechanisms of action, which also allows a reduction in the individual drug dosages and thus potentially in toxicity to the patient. We hypothesized that addition of SAHA and olaparib, an HDAC- and a PARP-inhibitor, respectively, to the established combination of fludarabine, clofarabine and busulfan would enhance AML cell cytotoxicity. Exposure of the AML cell lines KBM3/Bu2506, MV4-11, MOLM14 and OCI-AML3 to the 5-drug combination resulted in synergistic cytotoxicity with combination indexes < 1. Increased protein acetylation and decreased poly(ADP-ribosyl)ation were observed, as expected. Activation of apoptosis was suggested by cleavage of Caspase 3 and PARP1, DNA fragmentation, increased reactive oxygen species, and decreased mitochondrial membrane potential. The reduction in poly(ADP-ribosyl)ation was independent of caspase activation. Several proteins involved in DNA damage response and repair were downregulated, which may be contributing factors for the observed synergism. The increased phosphorylation of DNAPKcs suggests inhibition of its kinase activity and diminution of its role in DNA repair. A similar synergism was observed in patient-derived cell samples. These findings will be important in designing clinical trials using these drug combinations as pre-transplant conditioning regimens for AML patients.
Collapse
Affiliation(s)
- Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bin Yuan
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David Murray
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Leon Ramdial
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaowen Tang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Komatsu S, Hamada K, Furuya T, Nishiuchi T, Tani M. Membrane Proteomics to Understand Enhancement Effects of Millimeter-Wave Irradiation on Wheat Root under Flooding Stress. Int J Mol Sci 2023; 24:ijms24109014. [PMID: 37240359 DOI: 10.3390/ijms24109014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Millimeter-wave irradiation of wheat seeds enhances the growth of roots under flooding stress, but its mechanism is not clearly understood. To understand the role of millimeter-wave irradiation on root-growth enhancement, membrane proteomics was performed. Membrane fractions purified from wheat roots were evaluated for purity. H+-ATPase and calnexin, which are protein markers for membrane-purification efficiency, were enriched in a membrane fraction. A principal-component analysis of the proteomic results indicated that the millimeter-wave irradiation of seeds affects membrane proteins in grown roots. Proteins identified using proteomic analysis were confirmed using immunoblot or polymerase chain reaction analyses. The abundance of cellulose synthetase, which is a plasma-membrane protein, decreased under flooding stress; however, it increased with millimeter-wave irradiation. On the other hand, the abundance of calnexin and V-ATPase, which are proteins in the endoplasmic reticulum and vacuolar, increased under flooding stress; however, it decreased with millimeter-wave irradiation. Furthermore, NADH dehydrogenase, which is found in mitochondria membranes, was upregulated due to flooding stress but downregulated following millimeter-wave irradiation even under flooding stress. The ATP content showed a similar trend toward change in NADH dehydrogenase expression. These results suggest that millimeter-wave irradiation improves the root growth of wheat via the transitions of proteins in the plasma membrane, endoplasmic reticulum, vacuolar, and mitochondria.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Kazuna Hamada
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Takashi Furuya
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa 920-8640, Japan
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
7
|
Mouawad N, Capasso G, Ruggeri E, Martinello L, Severin F, Visentin A, Facco M, Trentin L, Frezzato F. Is It Still Possible to Think about HSP70 as a Therapeutic Target in Onco-Hematological Diseases? Biomolecules 2023; 13:biom13040604. [PMID: 37189352 DOI: 10.3390/biom13040604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The search for molecules to be targeted that are involved in apoptosis resistance/increased survival and pathogenesis of onco-hematological malignancies is ongoing since these diseases are still not completely understood. Over the years, a good candidate has been identified in the Heat Shock Protein of 70kDa (HSP70), a molecule defined as “the most cytoprotective protein ever been described”. HSP70 is induced in response to a wide variety of physiological and environmental insults, allowing cells to survive lethal conditions. This molecular chaperone has been detected and studied in almost all the onco-hematological diseases and is also correlated to poor prognosis and resistance to therapy. In this review, we give an overview of the discoveries that have led us to consider HSP70 as a therapeutic target for mono- or combination-therapies in acute and chronic leukemias, multiple myeloma and different types of lymphomas. In this excursus, we will also consider HSP70 partners, such as its transcription factor HSF1 or its co-chaperones whose druggability could indirectly affect HSP70. Finally, we will try to answer the question asked in the title of this review considering that, despite the effort made by research in this field, HSP70 inhibitors never reached the clinic.
Collapse
|
8
|
Valdez BC, Murray D, Yuan B, Nieto Y, Popat U, Andersson BS. ABT199/venetoclax potentiates the cytotoxicity of alkylating agents and fludarabine in acute myeloid leukemia cells. Oncotarget 2022; 13:319-330. [PMID: 35154579 PMCID: PMC8830224 DOI: 10.18632/oncotarget.28193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
The antineoplastic activity of pre-transplant regimens in hematopoietic stem cell transplantation (HSCT) is a critical factor for acute myeloid leukemia (AML) patients. There is an urgent need to identify novel approaches without jeopardizing patient safety. We hypothesized that combination of drugs with different mechanisms of action would provide better cytotoxicity. We, therefore, determined the synergistic cytotoxicity of various combinations of the alkylating agents busulfan (Bu) and 4-hydroperoxycyclophosphamide (4HC), the nucleoside analog fludarabine (Flu) and the BCL2 inhibitor ABT199/venetoclax in AML cells. [Bu+4HC] and [Bu+Flu] inhibited cell proliferation and activated apoptosis; addition of ABT199 to either combinations significantly increased these effects with combination indexes < 1. Apoptosis is suggested by cleavages of PARP1 and CASPASE 3, DNA fragmentation, increased reactive oxygen species, decreased mitochondrial membrane potential, and increased pro-apoptotic proteins in the cytoplasm. A similar enhancement of apoptosis was observed in patient-derived cell samples. ABT199/venetocalx upregulated anti-apoptotic MCL1 as a compensatory mechanism but addition of [Bu+4HC] or [Bu+Flu] negated this effect by CASPASE 3-mediated cleavage of MEK1/2 and its substrate MCL1. CASPASE 3 caused cleavage of pro-survival β-CATENIN, which likely contributed to the activation of stress signaling pathways involving SAPK/JNK and AMPK. The observed synergistic cytotoxicity was associated with an inhibition of pro-survival pathways involving STAT1, STAT5 and PI3K. These findings will be useful in designing clinical trials using these drug combinations as pre-transplant conditioning regimens for AML patients.
Collapse
Affiliation(s)
- Benigno C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Murray
- Division/Department of Experimental Oncology, University of Alberta/Cross Cancer Institute, Edmonton T6G 1Z2, Alberta, Canada
| | - Bin Yuan
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Berdeja JG, Laubach JP, Richter J, Stricker S, Spencer A, Richardson PG, Chari A. Panobinostat From Bench to Bedside: Rethinking the Treatment Paradigm for Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:752-765. [PMID: 34340951 DOI: 10.1016/j.clml.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
Relapsed and refractory multiple myeloma (RRMM) presents a therapeutic challenge due to the development of drug resistance. Panobinostat is an oral histone deacetylase inhibitor (HDACi) that affects multiple cellular pathways and has demonstrated the ability to resensitize refractory-multiple myeloma cells in preclinical studies, as well as in patients with RRMM in clinical trials. Synergy of panobinostat with a number of different classes of antimyeloma drugs (proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies) has also been shown. Panobinostat is a promising HDACi for the treatment of multiple myeloma. Here, we present a comprehensive review of preclinical and clinical studies of panobinostat.
Collapse
Affiliation(s)
- Jesus G Berdeja
- Sarah Cannon Research Institute, Nashville, TN; Tennessee Oncology PLLC, Nashville, TN
| | - Jacob P Laubach
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Joshua Richter
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY
| | | | - Andrew Spencer
- Alfred Hospital - Monash University, Melbourne, Australia
| | | | - Ajai Chari
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY.
| |
Collapse
|
10
|
Yang Y, Fu LJ, Chen CM, Hu MW. Venetoclax in combination with chidamide and dexamethasone in relapsed/refractory primary plasma cell leukemia without t(11;14): A case report. World J Clin Cases 2021; 9:1175-1183. [PMID: 33644182 PMCID: PMC7896656 DOI: 10.12998/wjcc.v9.i5.1175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Conventional therapies for primary plasma cell leukemia (pPCL) are usually ineffective, with a short remission time with the use of multiple myeloma medications, showing aggressiveness of pPCL. B-cell lymphoma-2 inhibitor venetoclax is usually used for relapsed/refractory multiple myeloma (RRMM) with t(11;14). There are very few studies published on the use of venetoclax in pPCL without t(11;14). Similarly, histone deacetylase inhibitors are considered effective for the treatment of RRMM, but there are no reports on their use in pPCL.
CASE SUMMARY A 57-year-old woman with severe anemia, thrombocytopenia, multiple bone destruction, impaired renal function, and 42.7% of peripheral plasma cells is reported. After multiple chemotherapy regimens and chimeric antigen receptor T-cell treatment, the disease progressed again. The patient had very good partial response and was maintained for a long time on venetoclax in combination with chidamide and dexamethasone therapy.
CONCLUSION The success of venetoclax-chidamide-dexamethasone combination therapy in achieving a very good partial response suggested that it can be used for refractory/relapsed pPCL patients who have been exhausted with the use of various drug combinations and had poor survival outcomes.
Collapse
Affiliation(s)
- Yang Yang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310014, Zhejiang Province, China
| | - Li-Juan Fu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310014, Zhejiang Province, China
| | - Chun-Mei Chen
- Department of Hematology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310014, Zhejiang Province, China
| | - Mei-Wei Hu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
11
|
Satta T, Grant S. Enhancing venetoclax activity in hematological malignancies. Expert Opin Investig Drugs 2020; 29:697-708. [PMID: 32600066 PMCID: PMC7529910 DOI: 10.1080/13543784.2020.1789588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Targeting anti-apoptotic pathways involving the BCL2 family proteins represents a novel treatment strategy in hematologic malignancies. Venetoclax, a selective BCL2 inhibitor, represents the first approved agent of this class, and is currently used in CLL and AML. However, monotherapy is rarely sufficient for sustained responses due to the development of drug resistance and loss of dependence upon the targeted protein. Numerous pre-clinical studies have shown that combining venetoclax with other agents may represent a more effective therapeutic strategy by circumventing resistance mechanisms. In this review, we summarize pre-clinical data providing a foundation for rational combination strategies involving venetoclax. AREAS COVERED Novel combination strategies in hematologic malignancies involving venetoclax, primarily at the pre-clinical level, will be reviewed. We emphasize novel agents that interrupt complementary or compensatory pro-survival pathways, and particularly mechanistic insights underlying synergism. PubMed, Cochrane, EMBASE, and Google scholar were searched from 2000. EXPERT OPINION Although venetoclax has proven to be an effective therapeutic in hematologic malignancies, monotherapy may be insufficient for maximal effectiveness due to the development of resistance and/or loss of BCL2 addiction. Further pre-clinical and clinical development of combination therapies may be necessary for optimal outcomes in patients with diverse blood cancers.
Collapse
Affiliation(s)
- Toshihisa Satta
- Division of Hematology/Oncology, Virginia Commonwealth University , Richmond, USA
| | - Steven Grant
- Division of Hematology/Oncology, Virginia Commonwealth University , Richmond, USA
- Department of Biochemistry, Virginia Commonwealth University , Richmond, USA
- Department of Pharmacology, Virginia Commonwealth University , Richmond, USA
- Department of Molecular and Human Genetics, Virginia Commonwealth University , Richmond, USA
| |
Collapse
|