1
|
Leonard A, Weiss MJ. Hematopoietic stem cell collection for sickle cell disease gene therapy. Curr Opin Hematol 2024; 31:104-114. [PMID: 38359264 PMCID: PMC11414477 DOI: 10.1097/moh.0000000000000807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW Gene therapy for sickle cell disease (SCD) is advancing rapidly, with two transformative products recently approved by the US Food and Drug Administration and numerous others under study. All current gene therapy protocols require ex vivo modification of autologous hematopoietic stem cells (HSCs). However, several SCD-related problems impair HSC collection, including a stressed and damaged bone marrow, potential cytotoxicity by the major therapeutic drug hydroxyurea, and inability to use granulocyte colony stimulating factor, which can precipitate severe vaso-occlusive events. RECENT FINDINGS Peripheral blood mobilization of HSCs using the CXCR4 antagonist plerixafor followed by apheresis collection was recently shown to be safe and effective for most SCD patients and is the current strategy for mobilizing HSCs. However, exceptionally large numbers of HSCs are required to manufacture an adequate cellular product, responses to plerixafor are variable, and most patients require multiple mobilization cycles, increasing the risk for adverse events. For some, gene therapy is prohibited by the failure to obtain adequate numbers of HSCs. SUMMARY Here we review the current knowledge on HSC collection from individuals with SCD and potential improvements that may enhance the safety, efficacy, and availability of gene therapy for this disorder.
Collapse
Affiliation(s)
- Alexis Leonard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
2
|
Wu J, Shi Y, Yang S, Tang Z, Li Z, Li Z, Zuo J, Ji W, Niu Y. Current state of stem cell research in non-human primates: an overview. MEDICAL REVIEW (2021) 2023; 3:277-304. [PMID: 38235400 PMCID: PMC10790211 DOI: 10.1515/mr-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 01/19/2024]
Abstract
The remarkable similarity between non-human primates (NHPs) and humans establishes them as essential models for understanding human biology and diseases, as well as for developing novel therapeutic strategies, thereby providing more comprehensive reference data for clinical treatment. Pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells provide unprecedented opportunities for cell therapies against intractable diseases and injuries. As continue to harness the potential of these biotechnological therapies, NHPs are increasingly being employed in preclinical trials, serving as a pivotal tool to evaluate the safety and efficacy of these interventions. Here, we review the recent advancements in the fundamental research of stem cells and the progress made in studies involving NHPs.
Collapse
Affiliation(s)
- Junmo Wu
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Yuxi Shi
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shanshan Yang
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zengli Tang
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zifan Li
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhuoyao Li
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Jiawei Zuo
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Weizhi Ji
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Yuyu Niu
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
3
|
Hematopoietic Stem Cell Mobilization: Current Collection Approaches, Stem Cell Heterogeneity, and a Proposed New Method for Stem Cell Transplant Conditioning. Stem Cell Rev Rep 2021; 17:1939-1953. [PMID: 34661830 DOI: 10.1007/s12015-021-10272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Hematopoietic stem cells naturally traffic out of their bone marrow niches into the peripheral blood. This natural trafficking process can be enhanced with numerous pharmacologic agents - a process termed "mobilization" - and the mobilized stem cells can be collected for transplantation. We review the current state of mobilization with an update on recent clinical trials and new biologic mechanisms regulating stem cell trafficking. We propose that hematopoietic mobilization can be used to answer questions regarding hematopoietic stem cell heterogeneity, can be used for non-toxic conditioning of patients receiving stem cell transplants, and can enhance gene editing and gene therapy strategies to cure genetic diseases.
Collapse
|
4
|
Fröbel J, Landspersky T, Percin G, Schreck C, Rahmig S, Ori A, Nowak D, Essers M, Waskow C, Oostendorp RAJ. The Hematopoietic Bone Marrow Niche Ecosystem. Front Cell Dev Biol 2021; 9:705410. [PMID: 34368155 PMCID: PMC8339972 DOI: 10.3389/fcell.2021.705410] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The bone marrow (BM) microenvironment, also called the BM niche, is essential for the maintenance of fully functional blood cell formation (hematopoiesis) throughout life. Under physiologic conditions the niche protects hematopoietic stem cells (HSCs) from sustained or overstimulation. Acute or chronic stress deregulates hematopoiesis and some of these alterations occur indirectly via the niche. Effects on niche cells include skewing of its cellular composition, specific localization and molecular signals that differentially regulate the function of HSCs and their progeny. Importantly, while acute insults display only transient effects, repeated or chronic insults lead to sustained alterations of the niche, resulting in HSC deregulation. We here describe how changes in BM niche composition (ecosystem) and structure (remodeling) modulate activation of HSCs in situ. Current knowledge has revealed that upon chronic stimulation, BM remodeling is more extensive and otherwise quiescent HSCs may be lost due to diminished cellular maintenance processes, such as autophagy, ER stress response, and DNA repair. Features of aging in the BM ecology may be the consequence of intermittent stress responses, ultimately resulting in the degeneration of the supportive stem cell microenvironment. Both chronic stress and aging impair the functionality of HSCs and increase the overall susceptibility to development of diseases, including malignant transformation. To understand functional degeneration, an important prerequisite is to define distinguishing features of unperturbed niche homeostasis in different settings. A unique setting in this respect is xenotransplantation, in which human cells depend on niche factors produced by other species, some of which we will review. These insights should help to assess deviations from the steady state to actively protect and improve recovery of the niche ecosystem in situ to optimally sustain healthy hematopoiesis in experimental and clinical settings.
Collapse
Affiliation(s)
- Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Theresa Landspersky
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - Gülce Percin
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Christina Schreck
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - Susann Rahmig
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Ori
- Proteomics of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marieke Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.,Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Robert A J Oostendorp
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| |
Collapse
|