1
|
Pegoraro A, Bezzerri V, Tridello G, Brignole C, Lucca F, Pintani E, Danesino C, Cesaro S, Fioredda F, Cipolli M. Growth Charts for Shwachman-Diamond Syndrome at Ages 0 to 18 Years. Cancers (Basel) 2024; 16:1420. [PMID: 38611098 PMCID: PMC11010856 DOI: 10.3390/cancers16071420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Shwachman-Diamond syndrome (SDS) is one of the most common inherited bone marrow failure syndromes. SDS is characterized by hypocellular bone marrow, with a severe impairment of the myeloid lineage, resulting in neutropenia, thrombocytopenia, and, more rarely, anemia. Almost 15% of patients with SDS develop myelodysplastic syndrome or acute myeloid leukemia as early as childhood or young adulthood. Exocrine pancreatic insufficiency is another common feature of SDS. Almost all patients with SDS show failure to thrive, which is associated with skeletal abnormalities due to defective ossification. Considering these observations, it remains unfeasible to use the common growth charts already available for the general population. To address this issue, we report how we drew up growth charts of patients with SDS aged 0 to 18 years. We analyzed height, weight, and body max index (BMI) in 121 Italian patients with SDS. Results indicated that the 50th and 3rd percentiles of weight and height of the pediatric general population correspond to the 97th and 50th percentiles of patients with SDS aged 0-18 years, respectively. In addition, the percentage increment in weight of subjects aged 14-18 years was higher in patients with SDS than in the general population. SDS-specific growth charts, such as those described here, afford a new tool, which is potentially useful for both clinical and research purposes in SDS.
Collapse
Affiliation(s)
- Anna Pegoraro
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Gloria Tridello
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Cecilia Brignole
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Francesca Lucca
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Emily Pintani
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Cesare Danesino
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Simone Cesaro
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | | | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| |
Collapse
|
2
|
Vissers LTW, van der Burg M, Lankester AC, Smiers FJW, Bartels M, Mohseny AB. Pediatric Bone Marrow Failure: A Broad Landscape in Need of Personalized Management. J Clin Med 2023; 12:7185. [PMID: 38002797 PMCID: PMC10672506 DOI: 10.3390/jcm12227185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Irreversible severe bone marrow failure (BMF) is a life-threatening condition in pediatric patients. Most important causes are inherited bone marrow failure syndromes (IBMFSs) and (pre)malignant diseases, such as myelodysplastic syndrome (MDS) and (idiopathic) aplastic anemia (AA). Timely treatment is essential to prevent infections and bleeding complications and increase overall survival (OS). Allogeneic hematopoietic stem cell transplantation (HSCT) provides a cure for most types of BMF but cannot restore non-hematological defects. When using a matched sibling donor (MSD) or a matched unrelated donor (MUD), the OS after HSCT ranges between 60 and 90%. Due to the introduction of post-transplantation cyclophosphamide (PT-Cy) to prevent graft versus host disease (GVHD), alternative donor HSCT can reach similar survival rates. Although HSCT can restore ineffective hematopoiesis, it is not always used as a first-line therapy due to the severe risks associated with HSCT. Therefore, depending on the underlying cause, other treatment options might be preferred. Finally, for IBMFSs with an identified genetic etiology, gene therapy might provide a novel treatment strategy as it could bypass certain limitations of HSCT. However, gene therapy for most IBMFSs is still in its infancy. This review summarizes current clinical practices for pediatric BMF, including HSCT as well as other disease-specific treatment options.
Collapse
Affiliation(s)
- Lotte T. W. Vissers
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Arjan C. Lankester
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Frans J. W. Smiers
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Alexander B. Mohseny
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| |
Collapse
|
3
|
Exploiting somatic mutations to decipher human blood production: a natural lineage-tracing strategy. Exp Hematol 2023; 121:2-5. [PMID: 36736573 DOI: 10.1016/j.exphem.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Lineage tracing using fluorescent proteins, genetic barcodes, and various other strategies has provided critical insights into the dynamics of both fetal and adult hematopoiesis in model organisms. However, these technologies cannot be readily used to study hematopoiesis in human beings. Therefore, there is a critical need to develop strategies to assess cellular dynamics within human hematopoietic tissues in vivo. Recently, researchers have used naturally acquired somatic mutations, coupled with other single-cell technologies, to retrospectively analyze clonal cellular dynamics. In summer 2022, the International Society for Experimental Hematology's New Investigator Committee hosted a webinar focused on novel approaches to dissect fetal and adult hematopoiesis, with presentations from Drs. Ana Cvejic and Vijay Sankaran. Here, we provide an overview of these exciting technological advances and some of the novel insights they have already provided in studying human hematopoiesis.
Collapse
|
4
|
Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet 2022; 141:1811-1836. [PMID: 35596788 DOI: 10.1007/s00439-022-02462-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Fanconi anemia is a genetic disorder that is characterized by bone marrow failure, as well as a predisposition to malignancies including leukemia and squamous cell carcinoma (SCC). At least 22 genes are associated with Fanconi anemia, constituting the Fanconi anemia DNA repair pathway. This pathway coordinates multiple processes and proteins to facilitate the repair of DNA adducts including interstrand crosslinks (ICLs) that are generated by environmental carcinogens, chemotherapeutic crosslinkers, and metabolic products of alcohol. ICLs can interfere with DNA transactions, including replication and transcription. If not properly removed and repaired, ICLs cause DNA breaks and lead to genomic instability, a hallmark of cancer. In this review, we will discuss the genetic and phenotypic characteristics of Fanconi anemia, the epidemiology of the disease, and associated cancer risk. The sources of ICLs and the role of ICL-inducing chemotherapeutic agents will also be discussed. Finally, we will review the detailed mechanisms of ICL repair via the Fanconi anemia DNA repair pathway, highlighting critical regulatory processes. Together, the information in this review will underscore important contributions to Fanconi anemia research in the past two decades.
Collapse
Affiliation(s)
- Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|