1
|
Solís C, Thompson WC, Peña JR, McDermott-Roe C, Langa P, Warren CM, Chrzanowska M, Wolska BM, Solaro RJ, Pieter Detombe, Goldspink PH. Mechano-growth factor E-domain modulates cardiac contractile function through 14-3-3 protein interactomes. Front Physiol 2022; 13:1028345. [PMID: 36467694 PMCID: PMC9709209 DOI: 10.3389/fphys.2022.1028345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
In the heart, alternative splicing of the igf-I gene produces two isoforms: IGF-IEa and IGF-IEc, (Mechano-growth factor, MGF). The sequence divergence between their E-domain regions suggests differential isoform function. To define the biological actions of MGF's E-domain, we performed in silico analysis of the unique C-terminal sequence and identified a phosphorylation consensus site residing within a putative 14-3-3 binding motif. To test the functional significance of Ser 18 phosphorylation, phospho-mimetic (S/E18) and phospho-null (S/A18) peptides were delivered to mice at different doses for 2 weeks. Cardiovascular function was measured using echocardiography and a pressure-volume catheter. At the lowest (2.25 mg/kg/day) and highest (9 mg/kg/day) doses, the peptides produced a depression in systolic and diastolic parameters. However, at 4.5 mg/kg/day the peptides produced opposing effects on cardiac function. Fractional shortening analysis also showed a similar trend, but with no significant change in cardiac geometry. Microarray analysis discovered 21 genes (FDR p < 0.01), that were expressed accordant with the opposing effects on contractile function at 4.5 mg/kg/day, with the nuclear receptor subfamily 4 group A member 2 (Nr4a2) identified as a potential target of peptide regulation. Testing the regulation of the Nr4a family, showed the E-domain peptides modulate Nr4a gene expression following membrane depolarization with KCl in vitro. To determine the potential role of 14-3-3 proteins, we examined 14-3-3 isoform expression and distribution. 14-3-3γ localized to the myofilaments in neonatal cardiac myocytes, the cardiac myocytes and myofilament extracts from the adult heart. Thermal shift analysis of recombinant 14-3-3γ protein showed the S/A18 peptide destabilized 14-3-3γ folding. Also, the S/A18 peptide significantly inhibited 14-3-3γ's ability to interact with myosin binding protein C (MYPC3) and phospholamban (PLN) in heart lysates from dobutamine injected mice. Conversely, the S/E18 peptide showed no effect on 14-3-3γ stability, did not inhibit 14-3-3γ's interaction with PLN but did inhibit the interaction with MYPC3. Replacing the glutamic acid with a phosphate group on Ser 18 (pSer18), significantly increased 14-3-3γ protein stability. We conclude that the state of Ser 18 phosphorylation within the 14-3-3 binding motif of MGF's E-domain, modulates protein-protein interactions within the 14-3-3γ interactome, which includes proteins involved in the regulation of contractile function.
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
| | - Walter C. Thompson
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
| | - James R. Peña
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher McDermott-Roe
- Department of Medicine, and Department of Genetics, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Paulina Langa
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M. Warren
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Magdalena Chrzanowska
- Blood Research Institute, Versiti, Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Beata M. Wolska
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pieter Detombe
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Phymedexp, Université de Montpellier, Inserm, CNRS, Montpellier, France
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021; 12:757161. [PMID: 34887759 PMCID: PMC8650509 DOI: 10.3389/fphar.2021.757161] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanchao Wang
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
3
|
Podratz JL, Tang JJ, Polzin MJ, Schmeichel AM, Nesbitt JJ, Windebank AJ, Madigan NN. Mechano growth factor interacts with nucleolin to protect against cisplatin-induced neurotoxicity. Exp Neurol 2020; 331:113376. [PMID: 32511954 DOI: 10.1016/j.expneurol.2020.113376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023]
Abstract
Mechano growth factor (MGF) is an alternatively spliced form of insulin-like growth factor-1 (IGF-1) that has shown to be neuroprotective against 6-hydroxydopamine toxicity and ischemic injury in the brain. MGF also induces neural stem cell proliferation in the hippocampus and preserves olfactory function in aging mice. Cisplatin is a chemotherapy drug that induces peripheral neuropathy in 30-40% of treated patients. Our studies were designed to see if MGF would protect dorsal root ganglion (DRG) neurons from cisplatin-induced neurotoxicity and to identify potential mechanisms that may be involved. Expression of endogenous MGF in adult DRG neurons in vivo ameliorated cisplatin-induced thermal hyperalgesia. Exogenous MGF and MGF with a cysteine added to the N-terminus (CMGF) also protected embryonic DRG neurons from cisplatin-induced cell death in vitro. Mass spectroscopy analysis of proteins bound to MGF showed that nucleolin is a key-binding partner. Antibodies against nucleolin prevented the neuroprotective effect of MGF and CMGF in culture. Both nucleolin and MGF are located in the nucleolus of DRG neurons. RNAseq of RNA associated with MGF indicated that MGF may be involved in RNA processing, protein targeting and transcription/translation. Nucleolin is an RNA binding protein that is readily shuttled between the nucleus, cytoplasm and plasma membrane. Nucleolin and MGF may work together to prevent cisplatin-induced neurotoxicity. Exploring the known mechanisms of nucleolin may help us better understand the mechanisms of cisplatin toxicity and how MGF protects DRG neurons.
Collapse
Affiliation(s)
- J L Podratz
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - J J Tang
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - M J Polzin
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - A M Schmeichel
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - J J Nesbitt
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - A J Windebank
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America.
| | - N N Madigan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
4
|
Ma Y, Song Y, Li L, Dong L, Wang C, Wang P, Yang L. Mechano growth factor pretreatment yield mechanical stimuli induced cell stress responses in ligament fibroblasts of osteoarthritis via activating ATF-2. Biotechnol Lett 2020; 42:1337-1349. [PMID: 32222864 DOI: 10.1007/s10529-020-02866-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 12/09/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The purpose of this study is to investigate whether mechanical growth factor (MGF) promotes mechanical response to ligament fibroblasts in osteoarthritis knee cavity via activating transcription factor 2 (ATF-2). RESULTS Osteoarthritis ligament fibroblasts (OA-LFs) were suffered from 12% static mechanical stretch to mimic mechanical force mediated ligament injury. Meanwhile, OA-LFs were treated with MGF before and during mechanical stretch. We observed that OA delayed LFs response to mechanical injury, while MGF pretreatment promoted cells timely feedback the mechanically stimuli by inducing cellular stress. Additionally, MGF accelerated the ligament injury repair by promoting cell migration, decreasing the MMP-2 activity, and remitting the cell deformation via ATF-2 activating in cells. CONCLUSIONS Our study shows that MGF pretreatment of OA-LFs can respond quickly to mechanical damage and repair ligament tissue by activating ATF-2. Therefore, MGF has potential as a therapeutic for OA patients.
Collapse
Affiliation(s)
- Yu Ma
- '111' Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yang Song
- '111' Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, 400044, China. .,Department of Bioengineering, University of California Los Angeles, Los Angeles, 90095, USA.
| | - Linhao Li
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lili Dong
- '111' Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Chunli Wang
- '111' Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Pingping Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, 90095, USA. .,Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Li Yang
- '111' Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, 400044, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
5
|
Dobolyi A, Lékó AH. The insulin-like growth factor-1 system in the adult mammalian brain and its implications in central maternal adaptation. Front Neuroendocrinol 2019; 52:181-194. [PMID: 30552909 DOI: 10.1016/j.yfrne.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/04/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Our knowledge on the bioavailability and actions of insulin-like growth factor-1 (IGF-1) has markedly expanded in recent years as novel mechanisms were discovered on IGF binding proteins (IGFBPs) and their ability to release IGF-1. The new discoveries allowed a better understanding of the endogenous physiological actions of IGF-1 and also its applicability in therapeutics. The focus of the present review is to summarize novel findings on the neuronal, neuroendocrine and neuroplastic actions of IGF-1 in the adult brain. As most of the new regulatory mechanisms were described in the periphery, their implications on brain IGF system will also be covered. In addition, novel findings on the effects of IGF-1 on lactation and maternal behavior are described. Based on the enormous neuroplastic changes related to the peripartum period, IGF-1 has great but largely unexplored potential in maternal adaptation of the brain, which is highlighted in the present review.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - András H Lékó
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Song Y, Xu K, Yu C, Dong L, Chen P, Lv Y, Chiang MY, Li L, Liu W, Yang L. The use of mechano growth factor to prevent cartilage degeneration in knee osteoarthritis. J Tissue Eng Regen Med 2017; 12:738-749. [DOI: 10.1002/term.2493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 05/02/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Song
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
- Biosystems and Biomaterials DivisionNational Institute of Standards and Technology Gaithersburg MD USA
| | - Kang Xu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA USA
| | - Can Yu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Lili Dong
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Peixing Chen
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Yonggang Lv
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Martin Y.M. Chiang
- Biosystems and Biomaterials DivisionNational Institute of Standards and Technology Gaithersburg MD USA
| | - Linhao Li
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical EngineeringBeihang University Beijing China
| | - Wanqian Liu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Li Yang
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| |
Collapse
|
7
|
Chen H, Lv K, Dai Z, Ji G, Wang T, Wang Y, Zhang Y, Kan G, Li Y, Qu L. Intramuscular injection of mechano growth factor E domain peptide regulated expression of memory-related sod, miR-134 and miR-125b-3p in rat hippocampus under simulated weightlessness. Biotechnol Lett 2016; 38:2071-2080. [PMID: 27623796 DOI: 10.1007/s10529-016-2210-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/31/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To investigate the expression of memory-related antioxidant genes and miRNAs under simulated weightlessness and the regulation of mechano growth factor (MGF) E domain, the peptide preventing nerve damage. RESULTS Igf-iea and mgf mRNA levels, expression of antioxidant genes sod1 and sod2 and levels of miR-134 and miR-125b-3p increased in rat hippocampus after 14 days tail suspension to simulate weightlessness which was inhibited with intramuscular injection of E domain peptide. Therefore, administration of MGF E domain peptide could reverse increased expressions of memory-related igf-iea, mgf, sod1, sod2, miR-134 and miR-125b-3p in rat hippocampus under simulated weightlessness. CONCLUSIONS MGF may regulate the redox state and miRNA-targeted NR-CREB signaling, and intramuscular injection may be the alternative administration because of its safety, convenience and ability to pass through the blood brain barrier.
Collapse
Affiliation(s)
- Hailong Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China.,Department of Health Technology Research and Development, Space Institute of Southern China (Shenzhen), Shamiao Road 4#, Pingdi Street, Longgang District, Shenzhen, 518117, China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Guohua Ji
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Tingmei Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Yanli Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Yongliang Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China.
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China.
| |
Collapse
|
8
|
Zhang B, Luo Q, Kuang D, Ju Y, Song G. Mechano-growth factor E peptide promotes healing of rat injured tendon. Biotechnol Lett 2016; 38:1817-25. [DOI: 10.1007/s10529-016-2162-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/16/2016] [Indexed: 01/07/2023]
|
9
|
Increased nuclear stiffness via FAK-ERK1/2 signaling is necessary for synthetic mechano-growth factor E peptide-induced tenocyte migration. Sci Rep 2016; 6:18809. [PMID: 26742689 PMCID: PMC4705462 DOI: 10.1038/srep18809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 01/15/2023] Open
Abstract
We have previously reported that a synthetic mechano-growth factor (MGF) C-terminal E-domain with 25 amino acids (MGF-C25E) promotes rat tenocyte migration through the FAK-ERK1/2 signaling pathway. However, the role of the nucleus in MGF-C25E-promoted tenocyte migration and the molecular mechanisms involved remain unclear. In this study, we demonstrate that MGF-C25E increases the Young’s modulus of tenocytes through the FAK-ERK1/2 signaling pathway. This increase is not accompanied by an obvious change in the expression of Lamin A/C but is accompanied by significant chromatin condensation, indicating that MGF-C25E-induced chromatin condensation may contribute to the increased nuclear stiffness. Moreover, DNA methylation is observed in MGF-C25E-treated tenocytes. Inhibition of DNA methylation suppresses the elevation in chromatin condensation, in nuclear stiffness, and in tenocyte migration induced by MGF-C25E. The inhibition of the focal adhesion kinase (FAK) or extracellular signal regulated kinase 1/2 (ERK1/2) signals represses MGF-C25E-promoted DNA methylation. It also abolishes chromatin condensation, nuclear stiffness, and cell migration. Taken together, our results suggest that MGF-C25E promotes tenocyte migration by increasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This provides strong evidence for the role of nuclear mechanics in tenocyte migration and new insight into the molecular mechanisms of MGF-promoted tenocyte migration.
Collapse
|
10
|
Song Y, Yu C, Wang C, Ma X, Xu K, Zhong JL, Lv Y, Sung KP, Yang L. Mechano growth factor-C24E, a potential promoting biochemical factor for ligament tissue engineering. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Zhang B, Luo Q, Sun J, Xu B, Ju Y, Yang L, Song G. MGF enhances tenocyte invasion through MMP-2 activity via the FAK-ERK1/2 pathway. Wound Repair Regen 2015; 23:394-402. [PMID: 25847391 DOI: 10.1111/wrr.12293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 03/16/2015] [Indexed: 11/30/2022]
Abstract
Tendon regeneration and healing requires tenocytes to move to the repair site followed by proliferation and synthesis of the extracellular matrix. A novel synthetic growth factor, mechano-growth factor (MGF), has been discovered to have positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. In this study, using a transwell system, we found that MGF-C25E (a synthetic mechano-growth factor E peptide) significantly promotes tenocyte invasion, which was accompanied by the increased phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2) as well as the increased activity of matrix metalloproteinases-2 (MMP-2). The MMP-2 inhibitor OA-Hy blocked MGF-C25E-promoted tenocyte invasion. Inhibitors of FAK or ERK1/2 blocked MGF-C25E-promoted tenocyte invasion and MMP-2 activity as well. These results indicate that MGF-C25E promotes tenocyte invasion by increasing MMP-2 activity via the FAK-ERK1/2 signaling pathway. Taken together, our findings provide the first evidence that MGF-C25E enhances tenocyte invasion and indicate that it may serve as a potential repair material for promoting the healing and regeneration of injured tendons.
Collapse
Affiliation(s)
- Bingyu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Jinghui Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Baiyao Xu
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya, Japan
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya, Japan
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Shang J, Fan X, Liu H. The role of mechano-growth factor E peptide in the regulation of osteosarcoma. Oncol Lett 2015; 10:697-704. [PMID: 26622556 DOI: 10.3892/ol.2015.3339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 05/07/2015] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma is one of the most common bone tumors, and exhibits a high degree of malignancy. Gene therapy is a novel approach to its treatment, however, specific target genes are required to enable effective use of this therapy. In order to investigate the effects of the mechano-growth factor E (MGF-E) peptide, which is derived from the IGF-I alternative splicing isoform, on the regulation of the development of osteosarcoma, the expression of MGF was detected in osteosarcoma cell lines with different degrees of malignancy. Concomitantly, exogenous MGF-E peptide was used to stimulate these osteosarcoma cell lines. The results demonstrated that MGF was overexpressed in malignant osteosarcoma cells, while it was not expressed in the least malignant osteosarcoma cells. Furthermore, MGF-E treatment altered the cell cycle distribution, and promoted the proliferation, migration and invasion of osteosarcoma cells. The possible mechanisms underlying these effects were detected by quantitative polymerase chain reaction and western blotting. Based on these results, it was hypothesized that MGF may be a suitable biomarker for malignant osteosarcoma phenotypes.
Collapse
Affiliation(s)
- Jin Shang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Fan
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
13
|
Kasprzak A, Adamek A, Przybyszewska W, Pyda P, Szmeja J, Seraszek-Jaros A, Lanzafame A, Surdacka A, Mozer-Lisewska I, Koczorowska M. Insulin-like growth factor-1 mRNA isoforms and insulin-like growth factor-1 receptor mRNA expression in chronic hepatitis C. World J Gastroenterol 2015; 21:3867-3875. [PMID: 25852271 PMCID: PMC4385533 DOI: 10.3748/wjg.v21.i13.3867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/08/2015] [Indexed: 02/07/2023] Open
Abstract
AIM: To evaluate the expression of different insulin-like growth factor (IGF)-1 mRNA isoforms and IGF-1 receptor (IGF-1R) mRNA in hepatitis C virus (HCV)-infected livers.
METHODS: Thirty-four liver biopsy specimens from chronic hepatitis C (CH-C) patients were obtained before anti-viral therapy. Inflammatory activity (grading) and advancement of fibrosis (staging) were evaluated using a modified point scale of METAVIR. The samples were analyzed using quantitative real-time PCR technique. From fragments of liver biopsies and control liver that were divided and ground in liquid nitrogen, RNA was isolated using RNeasy Fibrous Tissue Mini Kit according to the manufacturer’s instruction. Expression levels of IGF-1 mRNA isoforms (IGF-1A, IGF-1B, IGF-1C, P1, and P2) and IGF-1R mRNA were determined through normalization of copy numbers in samples as related to reference genes: glyceraldehyde-3-phosphate dehydrogenase and hydroxymethylbilane synthase. Results on liver expression of the IGF-1 mRNA isoforms and IGF-1R transcript were compared to histological alterations in liver biopsies and with selected clinical data in the patients. Statistical analysis was performed using Statistica PL v. 9 software.
RESULTS: The study showed differences in quantitative expression of IGF-1 mRNA variants in HCV-infected livers, as compared to the control. Higher relative expression of total IGF-1 mRNA and of IGF-1 mRNAs isoforms (P1, A, and C) in HCV-infected livers as compared to the control were detected. Within both groups, expression of the IGF-1A mRNA isoform significantly prevailed over expressions of B and C isoforms. Expression of P1 mRNA was higher than that of P2 only in CH-C. Very high positive correlations were detected between reciprocal expressions of IGF-1 mRNA isoforms P1 and P2 (r = 0.876). Expression of P1 and P2 mRNA correlated with IGF-1A mRNA (r = 0.891; r = 0.821, respectively), with IGF-1B mRNA (r = 0.854; r = 0.813, respectively), and with IGF-1C mRNA (r = 0.839; r = 0.741, respectively). Expression of IGF-1A mRNA significantly correlated with isoform B and C mRNA (r = 0.956; r = 0.869, respectively), and B with C isoforms (r = 0.868) (P < 0.05 in all cases). Lower expression of IGF-1A and B transcripts was noted in the more advanced liver grading (G2) as compared to G1. Multiple negative correlations were detected between expression of various IGF-1 transcripts and clinical data (e.g., alpha fetoprotein, HCV RNA, steatosis, grading, and staging). Expression of IGF-1R mRNA manifested positive correlation with grading and HCV-RNA.
CONCLUSION: Differences in quantitative expression of IGF-1 mRNA isoforms in HCV-infected livers, as compared to the control, suggest that HCV may induce alteration of IGF-1 splicing profile.
Collapse
|
14
|
Improving the osteogenic efficacy of BMP2 with mechano growth factor by regulating the signaling events in BMP pathway. Cell Tissue Res 2015; 361:723-31. [DOI: 10.1007/s00441-015-2154-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022]
|
15
|
Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 2015; 52:463-75. [PMID: 25818452 DOI: 10.1016/j.biomaterials.2015.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022]
Abstract
Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (P<0.05). Similarly, more cartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (P<0.05), indicating that MGF and TGF-β3 might be a better candidate for cartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair.
Collapse
|
16
|
Generation and evaluation of antibodies against human MGF E-peptide by reverse phase protein microarray and reverse competitive ELISA. Bioanalysis 2014; 5:2269-75. [PMID: 24053242 DOI: 10.4155/bio.13.195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Since 2005, as one of prohibited substances on the Prohibited List of the World Anti-Doping Agency (WADA), the occurence of mechano growth factor (MGF) abuse in sport has likely increased. However, there is still no WADA-validated and -approved method for its detection. RESULTS Four polyclonal antibodies (Ab-K01, Ab-B01, Ab-B02 and Ab-K02) against MGF C-terminal peptides were generated, purified and evaluated by western blot, ELISA and reverse-phase protein microarray, respectively. It was found that all the antibodies could identify their corresponding antigen in mouse serum by reverse-phase protein microarray, in particular, Ab-K01 showed the highest affinity among them and might be a potential tool for the detection of antibody affinity. Furthermore, Ab-B01 and Ab-K01 were successfully used for the determination of MGF-40 by reverse competitive ELISA. CONCLUSION The quantitative measurement of MGF-40 has laid the foundation for doping detection of MGF and further biological research on MGF.
Collapse
|
17
|
Philippou A, Maridaki M, Pneumaticos S, Koutsilieris M. The complexity of the IGF1 gene splicing, posttranslational modification and bioactivity. Mol Med 2014; 20:202-14. [PMID: 24637928 DOI: 10.2119/molmed.2014.00011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
The insulinlike growth factor-I (IGF-I) is an important factor which regulates a variety of cellular responses in multiple biological systems. The IGF1 gene comprises a highly conserved sequence and contains six exons, which give rise to heterogeneous mRNA transcripts by a combination of multiple transcription initiation sites and alternative splicing. These multiple transcripts code for different precursor IGF-I polypeptides, namely the IGF-IEa, IGF-IEb and IGF-IEc isoforms in humans, which also undergo posttranslational modifications, such as proteolytic processing and glycosylation. IGF-I actions are mediated through its binding to several cell-membrane receptors and the IGF-I domain responsible for the receptor binding is the bioactive mature IGF-I peptide, which is derived after the posttranslational cleavage of the pro-IGF-I isoforms and the removal of their carboxy-terminal E-peptides (that is, the Ea, Eb and Ec). Interestingly, differential biological activities have been reported for the different IGF-I isoforms, or for their E-peptides, implying that IGF-I peptides other than the IGF-I ligand also possess bioactivity and, thus, both common and unique or complementary pathways exist for the IGF-I isoforms to promote biological effects. The multiple peptides derived from IGF-I and the differential expression of its various transcripts in different conditions and pathologies appear to be compatible with the distinct cellular responses observed to the different IGF-I peptides and with the concept of a complex and possibly isoform-specific IGF-I bioactivity. This concept is discussed in the present review, in the context of the broad range of modifications that this growth factor undergoes which might regulate its mechanism(s) of action.
Collapse
Affiliation(s)
- Anastassios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Maridaki
- Department of Sports Medicine and Biology of Physical Activity, Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros Pneumaticos
- Third Department of Orthopaedic Surgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Vassilakos G, Philippou A, Tsakiroglou P, Koutsilieris M. Biological activity of the e domain of the IGF-1Ec as addressed by synthetic peptides. Hormones (Athens) 2014; 13:182-96. [PMID: 24776619 DOI: 10.1007/bf03401333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is a multipotent growth factor involved in the growth, development and regulation of homeostasis in a tissue-specific manner. Alternative splicing, multiple transcription initiation sites and different polyadelynation signals give rise to diverse mRNA isoforms, such as IGF-1Ea, IGF-1Eb and IGF-1Ec transcripts. There is increasing interest in the expression of the IGF-1 isoforms and their potential distinct biological role. IGF-1Ec results from alternative splicing of exons 4-5-6 and its expression is upregulated in various conditions and pathologies. Recent studies have shown that IGF-1Ec is preferentially increased after injury in skeletal muscle during post-infarctal myocardium remodelling and in cancer tissues and cell lines. A synthetic analogue corresponding to the last 24 aa of the E domain of the IGF-1Ec isoform has been used to elucidate its potential biological role. The aim of the present review is to describe and discuss the putative bioactivity of the E domain of the IGF-1Ec isoform.
Collapse
Affiliation(s)
- George Vassilakos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastassios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsakiroglou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Zhang B, Luo Q, Mao X, Xu B, Yang L, Ju Y, Song G. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway. Exp Cell Res 2014; 322:208-16. [DOI: 10.1016/j.yexcr.2014.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 01/07/2023]
|
20
|
Fornaro M, Hinken AC, Needle S, Hu E, Trendelenburg AU, Mayer A, Rosenstiel A, Chang C, Meier V, Billin AN, Becherer JD, Brace AD, Evans WJ, Glass DJ, Russell AJ. Mechano-growth factor peptide, the COOH terminus of unprocessed insulin-like growth factor 1, has no apparent effect on myoblasts or primary muscle stem cells. Am J Physiol Endocrinol Metab 2014; 306:E150-6. [PMID: 24253050 DOI: 10.1152/ajpendo.00408.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A splice form of IGF-1, IGF-1Eb, is upregulated after exercise or injury. Physiological responses have been ascribed to the 24-amino acid COOH-terminal peptide that is cleaved from the NH3-terminal 70-amino acid mature IGF-1 protein. This COOH-terminal peptide was termed "mechano-growth factor" (MGF). Activities claimed for the MGF peptide included enhancing muscle satellite cell proliferation and delaying myoblast fusion. As such, MGF could represent a promising strategy to improve muscle regeneration. Thus, at our two pharmaceutical companies, we attempted to reproduce the claimed effect of MGF peptides on human and mouse muscle myoblast proliferation and differentiation in vitro. Concentrations of peptide up to 500 ng/ml failed to increase the proliferation of C2C12 cells or primary human skeletal muscle myoblasts. In contrast, all cell types exhibited a proliferative response to mature IGF-1 or full-length IGF-1Eb. MGF also failed to inhibit the differentiation of myoblasts into myotubes. To address whether the response to MGF was lost in these tissue culture lines, we measured proliferation and differentiation of primary mouse skeletal muscle stem cells exposed to MGF. This, too, failed to demonstrate a significant effect. Finally, we tested whether MGF could alter a separate documented in vitro effect of the peptide, activation of p-ERK, but not p-Akt, in cardiac myocytes. Although a robust response to IGF-1 was observed, there were no demonstrated activating responses from the native or a stabilized MGF peptide. These results call in to question whether there is a physiological role for MGF.
Collapse
Affiliation(s)
- Mara Fornaro
- Novartis Institutes for Biomedical Research, Novartis Pharma, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Oh YI, Kim JH, Kang CW. Protective effect of short-term treatment with parathyroid hormone 1-34 on oxidative stress is involved in insulin-like growth factor-I and nuclear factor erythroid 2-related factor 2 in rat bone marrow derived mesenchymal stem cells. ACTA ACUST UNITED AC 2014; 189:1-10. [PMID: 24412273 DOI: 10.1016/j.regpep.2013.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/24/2013] [Accepted: 12/31/2013] [Indexed: 11/30/2022]
Abstract
Bone marrow-derived mesenchymal stem cell (MSC)-mediated regeneration is a promising treatment for degenerative disease and traumatic injuries. MSCs can be isolated from rats using magnetic-activated cell sorting with CD105 antibody. We investigated the relationships between the expression of endogenous insulin-like growth factor-I (IGF-I) and nuclear factor erythroid 2-related factor 2 (Nrf-2) during short-term treatment with parathyroid hormone (PTH) 1-34-induced protective response in MSCs. PTH 1-34 (10(-9)M) decreased reactive oxygen species (ROS) generation but increased cell viability and endogenous IGF-I (p<0.01). Suppression of IGF-I and Nrf-2 using specific small interfering RNA (siRNA) blocked the effects of PTH 1-34. Furthermore, increasing cell viability of PTH against hydrogen peroxide (H2O2) was suppressed by treatment with siRNA to IGF-I and Nr-2 (p<0.05). Exogenous IGF-I (10(-9)M) also increased endogenous IGF-I, cell viability, and Nrf-2 expression. These incremental increases were lessened by Nrf-2 siRNA (p<0.05). Exogenous IGF-I also inhibited the increase of H2O2-induced ROS generation, and the decrease of PTH 1-34-induced ROS generation in the presence of IGF-I and Nrf-2 siRNA. The increase of PTH 1-34-induced Nrf-2 expression was more significant in the nucleus than in the cytosol (p<0.05). PTH 1-34 also inhibited H2O2-induced inducible nitric oxide synthase expression, but increased the expression of heme oxygenase 1/2. The results implicate PTH 1-34, Nrf-2, and IGF-I signaling pathways in the response to oxidative stress. These factors could influence IGF-I regulation of metabolic fate and survival in MSCs.
Collapse
Affiliation(s)
- Young-Il Oh
- Department of Veterinary Physiology, College of Veterinary Medicine/Bio-Safety Research Institute, Chonbuk National University, South Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine/Bio-Safety Research Institute, Chonbuk National University, South Korea
| | - Chang-Won Kang
- Department of Veterinary Physiology, College of Veterinary Medicine/Bio-Safety Research Institute, Chonbuk National University, South Korea.
| |
Collapse
|
22
|
Xin J, Wang Y, Wang Z, Lin F. Functional and transcriptomic analysis of the regulation of osteoblasts by mechano-growth factor E peptide. Biotechnol Appl Biochem 2013; 61:193-201. [DOI: 10.1002/bab.1152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 08/19/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Juan Xin
- College of Communication Engineering; Chongqing China
- Research Center of Bioinspired Material Science and Engineering; College of Bioengineering; Chongqing University; Chongqing China
| | - Yuanliang Wang
- Research Center of Bioinspired Material Science and Engineering; College of Bioengineering; Chongqing University; Chongqing China
- Key Laboratory of Biorheological Science and Technology; Chongqing University, Ministry of Education; Chongqing China
| | - Zhen Wang
- Green Biologics Limited; Abingdon Oxfordshire UK
| | - Fuchun Lin
- Research Center of Bioinspired Material Science and Engineering; College of Bioengineering; Chongqing University; Chongqing China
- Key Laboratory of Biorheological Science and Technology; Chongqing University, Ministry of Education; Chongqing China
| |
Collapse
|
23
|
The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction. Mol Cell Biochem 2013; 381:69-83. [PMID: 23712705 PMCID: PMC3720995 DOI: 10.1007/s11010-013-1689-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/16/2013] [Indexed: 11/23/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) isoforms are expressed via alternative splicing. Expression of the minor isoform IGF-1Eb [also known as mechano-growth factor (MGF)] is responsive to cell stress. Since IGF-1 isoforms differ in their E-domain regions, we are interested in determining the biological function of the MGF E-domain. To do so, a synthetic peptide analog was used to gain mechanistic insight into the actions of the E-domain. Treatment of H9c2 cells indicated a rapid cellular uptake mechanism that did not involve IGF-1 receptor activation but resulted in a nuclear localization. Peptide treatment inhibited the intrinsic apoptotic pathway in H9c2 cells subjected to cell stress with sorbitol by preventing the collapse of the mitochondrial membrane potential and inhibition of caspase-3 activation. Therefore, we administered the peptide at the time of myocardial infarction (MI) in mice. At 2 weeks post-MI cardiac function, gene expression and cell death were assayed. A significant decline in both systolic and diastolic function was evident in untreated mice based on PV loop analysis. Delivery of the E-peptide ameliorated the decline in function and resulted in significant preservation of cardiac contractility. Associated with these changes were an inhibition of pathologic hypertrophy and significantly fewer apoptotic nuclei in the viable myocardium of E-peptide-treated mice post-MI. We conclude that administration of the MGF E-domain peptide may provide a means of modulating local tissue IGF-1 autocrine/paracrine actions to preserve cardiac function, prevent cell death, and pathologic remodeling in the heart.
Collapse
|
24
|
Philippou A, Armakolas A, Koutsilieris M. Evidence for the Possible Biological Significance of the igf-1 Gene Alternative Splicing in Prostate Cancer. Front Endocrinol (Lausanne) 2013; 4:31. [PMID: 23519101 PMCID: PMC3602724 DOI: 10.3389/fendo.2013.00031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 03/03/2013] [Indexed: 11/13/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) has been implicated in the pathogenesis of prostate cancer (PCa), since it plays a key role in cell proliferation, differentiation, and apoptosis. The IGF-I actions are mediated mainly via its binding to the type I IGF receptor (IGF-IR), however IGF-I signaling via insulin receptor (IR) and hybrid IGF-I/IR is also evident. Different IGF-I mRNA splice variants, namely IGF-IEa, IGF-IEb, and IGF-IEc, are expressed in human cells and tissues. These transcripts encode several IGF-I precursor proteins which contain the same bioactive product (mature IGF-I), however, they differ by the length of their signal peptides on the amino-terminal end and the structure of the extension peptides (E-peptides) on the carboxy-terminal end. There is an increasing interest in the possible different role of the IGF-I transcripts and their respective non-(mature)IGF-I products in the regulation of distinct biological activities. Moreover, there is strong evidence of a differential expression profile of the IGF-I splice variants in normal versus PCa tissues and PCa cells, implying that the expression pattern of the various IGF-I transcripts and their respective protein products may possess different functions in cancer biology. Herein, the evidence that the IGF-IEc transcript regulates PCa growth via Ec peptide specific and IGF-IR/IR-independent signaling is discussed.
Collapse
Affiliation(s)
- Anastassios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of AthensAthens, Greece
- *Correspondence: Anastassios Philippou and Michael Koutsilieris, Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, Goudi, Athens 115 27, Greece. e-mail: ;
| | - Athanasios Armakolas
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of AthensAthens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of AthensAthens, Greece
- *Correspondence: Anastassios Philippou and Michael Koutsilieris, Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, Goudi, Athens 115 27, Greece. e-mail: ;
| |
Collapse
|
25
|
Li Y, Wang Y, Wang P, Zhang B, Yan W, Sun J, Pan J. In vitrocytocompatibility evaluation of MGF-Ct24E chemically grafted and physically blended with maleic anhydride modified poly(D, L-lactic acid). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:849-64. [DOI: 10.1080/09205063.2012.723957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yuxiao Li
- a Research Center of Bioinspired Material Science and Engineering, College of Bioengineering, Chongqing University , Chongqing , China
| | - Yuanliang Wang
- a Research Center of Bioinspired Material Science and Engineering, College of Bioengineering, Chongqing University , Chongqing , China
| | - Pinpin Wang
- a Research Center of Bioinspired Material Science and Engineering, College of Bioengineering, Chongqing University , Chongqing , China
| | - Bingbing Zhang
- a Research Center of Bioinspired Material Science and Engineering, College of Bioengineering, Chongqing University , Chongqing , China
| | - Weiwei Yan
- a Research Center of Bioinspired Material Science and Engineering, College of Bioengineering, Chongqing University , Chongqing , China
| | - Jiaoxia Sun
- a Research Center of Bioinspired Material Science and Engineering, College of Bioengineering, Chongqing University , Chongqing , China
| | - Jun Pan
- a Research Center of Bioinspired Material Science and Engineering, College of Bioengineering, Chongqing University , Chongqing , China
| |
Collapse
|
26
|
Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, Ghoorah D, Kong X, Lin Z, Wang T. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models. Crit Rev Toxicol 2012; 42:613-32. [PMID: 22574684 DOI: 10.3109/10408444.2012.680431] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The etiology of Parkinson's disease (PD) is attributed to both environmental and genetic factors. The development of PD reportedly involves mitochondrial impairment, oxidative stress, α-synuclein aggregation, dysfunctional protein degradation, glutamate toxicity, calcium overloading, inflammation and loss of neurotrophic factors. Based on a link between mitochondrial dysfunction and pesticide exposure, many laboratories, including ours, have recently developed parkinsonian models by utilization of rotenone, a well-known mitochondrial complex I inhibitor. Rotenone models for PD appear to mimic most clinical features of idiopathic PD and recapitulate the slow and progressive loss of dopaminergic (DA) neurons and the Lewy body formation in the nigral-striatal system. Notably, potential human parkinsonian pathogenetic and pathophysiological mechanisms have been revealed through these models. In this review, we summarized various rotenone-based models for PD and discussed the implied etiology of and treatment for PD.
Collapse
Affiliation(s)
- Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430022, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Deng M, Wang Y, Zhang B, Liu P, Xiao H, Zhao J. New proangiogenic activity on vascular endothelial cells for C-terminal mechano growth factor. Acta Biochim Biophys Sin (Shanghai) 2012; 44:316-22. [PMID: 22382131 DOI: 10.1093/abbs/gms012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Angiogenesis is crucial in wound healing. The administration of the C-terminal 24-a.a. peptide of mechano growth factor (MGF24E) has been previously demonstrated to induce more blood vessels in regenerating bone around defective areas compared with the control. Accordingly, this study aims to determine whether MGF24E promotes bone defect healing through MGF24E-increased angiogenesis and whether MGF24E has positive effects on angiogenesis in vitro. The roles of MGF24E on angiogenesis and the underlying mechanisms were investigated. The cell proliferation, migration, and tubulogenesis of the human vascular endothelial EA.hy926 cells co-treated with 2% serum and MGF24E were determined to assess angiogenesis in comparison with 100 ng/ml of vascular endothelial growth factor 165 (VEGF(165))-positive control or vehicle control (phosphate-buffered saline). MGF24E treatment (10 ng/ml) significantly promoted the biological processes of angiogenesis on EA.hy926 cells compared with the vehicle control. The suppression of vascular endothelial growth factor and angiopoietin-I expressions by 2% serum starvation was reversed by the addition of 10 ng/ml of MGF24E in 2% serum medium. This result suggests that MGF24E has a protective effect on angiogenesis. Moreover, the inhibition of ERK due to PD98050 pretreatment completely abolished and mostly blocked MGF24E-induced proliferation and migration, respectively, whereas the MGF24-induced tubulogenesis and the angiogenic factor expression were only partially inhibited. These new findings suggest that MGF24E promotes angiogenesis by enhancing the expression of angiogenic cytokines which involves the MAPK/ERK-signaling pathway.
Collapse
Affiliation(s)
- Moyuan Deng
- Research Center of Bioinspired Materials Science and Engineering, Bioengineering College, Chongqing University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
28
|
Kravchenko IV, Furalyov VA, Popov VO. Stimulation of mechano-growth factor expression by myofibrillar proteins in murine myoblasts and myotubes. Mol Cell Biochem 2011; 363:347-55. [PMID: 22160926 DOI: 10.1007/s11010-011-1187-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
Mechano-growth factor (MGF) is a product of alternative splicing of the insulin-like growth factor 1 (IGF-1) mRNA. MGF is known to stimulate myoblast proliferation and to protect neurons and cardiomyocytes from apoptosis. MGF expression is dramatically increased in response to mechanical stimuli and tissue damage. The mechanisms of induction of MGF expression are as yet imperfectly understood. There is certain evidence that some protein factors able to stimulate MGF synthesis in normal myoblasts are released from damaged muscle. This study was undertaken to explore the nature of these protein inductors of MGF expression and to investigate the mechanism of their action. We report here that myofibrillar fraction of skeletal muscle homogenate activated MGF expression in murine myoblasts and myotubes in culture. The expression of another splice form of IGF-1 gene, IGF-1Ea, was also stimulated by myofibrils. Three myofibrillar proteins able to stimulate MGF synthesis were isolated. These proteins were identified by MALDI and immunoblotting as myomesin, myosin-binding protein C, and titin. The activation of MGF expression was associated with the increase of cAMP level in the cells. Inhibitor of adenylyl cyclase dideoxyadenosine arrested stimulation of MGF synthesis by all three myofibrillar proteins.
Collapse
Affiliation(s)
- Irina V Kravchenko
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskiy Prospect 33, 119071 Moscow, Russia.
| | | | | |
Collapse
|
29
|
Xiong N, Jia M, Chen C, Xiong J, Zhang Z, Huang J, Hou L, Yang H, Cao X, Liang Z, Sun S, Lin Z, Wang T. Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y. Neuroscience 2011; 199:292-302. [PMID: 22056603 DOI: 10.1016/j.neuroscience.2011.10.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that autophagy upregulation may be a tractable therapeutic intervention for clearing the disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in Parkinson's disease (PD). In this study, we explored a novel pharmacotherapeutic approach to treating PD by utilizing potential autophagy enhancers valproic acid (VPA) and carbamazepine (CBZ). Pretreatment with VPA (3 mM) and CBZ (50 μM) along with positive control rapamycin (Rap, 0.2 μM) or lithium (LiCl, 10 mM) significantly enhanced cell viability, decreased rotenone-induced nuclear fragmentation and apoptosis, ameliorated the decrease in mitochondrial membrane potential, reduced reactive oxygen species generation in the human neuroblastoma SH-SY5Y cells. Specifically, the numbers of lysosomes and autophagic vacuolar organelles were increased and the microtubule-associated protein 1 light chain 3-II (LC3-II) expression was up-regulated by VPA, CBZ, Rap, and LiCl (53%, 31%, 72%, and 63%), suggesting that these agents activated autophagic pathways. Moreover, pretreatment with the autophagy inhibitor chloroquine (Chl, 10 μM) remarkably strengthened rotenone toxicity in these cells. Our results suggest that VPA and CBZ, the most commonly used anti-epilepsy and mood-stabilizing medications with low-risk and easy administration might be potential therapeutics for PD.
Collapse
Affiliation(s)
- N Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430022, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Singh BK, Kumar A, Ahmad I, Kumar V, Patel DK, Jain SK, Singh C. Oxidative stress in zinc-induced dopaminergic neurodegeneration: Implications of superoxide dismutase and heme oxygenase-1. Free Radic Res 2011; 45:1207-22. [DOI: 10.3109/10715762.2011.607164] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Quesada A, Ogi J, Schultz J, Handforth A. C-terminal mechano-growth factor induces heme oxygenase-1-mediated neuroprotection of SH-SY5Y cells via the protein kinase Cϵ/Nrf2 pathway. J Neurosci Res 2011; 89:394-405. [DOI: 10.1002/jnr.22543] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/28/2010] [Accepted: 10/08/2010] [Indexed: 11/10/2022]
|
32
|
Deng M, Zhang B, Wang K, Liu F, Xiao H, Zhao J, Liu P, Li Y, Lin F, Wang Y. Mechano growth factor E peptide promotes osteoblasts proliferation and bone-defect healing in rabbits. INTERNATIONAL ORTHOPAEDICS 2010; 35:1099-106. [PMID: 21057789 DOI: 10.1007/s00264-010-1141-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/03/2010] [Accepted: 10/07/2010] [Indexed: 11/24/2022]
Abstract
To assess the potential efficacy of mechano growth factor (MGF) for bone injury, we firstly investigated the effects of growth factors, including MGF, its E peptide (a short 24-amino acid C-terminal peptide, MGF-Ct24E), and insulin-like growth factor 1(IGF-1) on MC3T3-E1 osteoblast-like cell proliferation. MGF-Ct24E had the highest pro-proliferation activity among three growth factors, which was 1.4 times greater than that of IGF-1. Moreover, MGF-Ct24E promoted cell proliferation by inducing cell cycle arrest in the S and G(2)/M phase of the cell cycle, but also mainly by the activation of the MAPK-Erk1/2 pathway. In vivo, a 5-mm segmental bone defect in the radius of 27 rabbits was treated with MGF-Ct24E by two doses (28.5 and 57 μg /kg body weight) vs. non-growth factor injection for five consecutive days postoperatively. The cumulative rate of radiographically healed defects and histological scores of bone defect-healing revealed a statistical difference between high-dose treatment and non treatment (p < 0.01), which showed the treatment promoted defect healing. This report is the first to demonstrate that MGF-Ct24E possesses positive effects on osteoblast proliferation and bone-defect healing, suggesting a new strategy in fracture healing.
Collapse
Affiliation(s)
- Moyuan Deng
- Ministry of Education, Key Laboratory of Biorheological Science and Technology, Research Center of Bioinspired Materials, Science and Engineering of National 985 Project program of China, Chongqing University, Chongqing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Matheny RW, Nindl BC, Adamo ML. Minireview: Mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 2010; 151:865-75. [PMID: 20130113 PMCID: PMC2840678 DOI: 10.1210/en.2009-1217] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The discovery that IGF-I mRNAs encoding isoforms of the pro-IGF-I molecule are differentially regulated in response to mechanical stress in skeletal muscle has been the impetus for a number of studies designed to demonstrate that alternative splicing of IGF-I pre-mRNA involving exons 4, 5, and 6 gives rise to a unique peptide derived from pro-IGF-I that plays a novel role in myoblast proliferation. Research suggests that after injury to skeletal muscle, the IGF-IEb mRNA splice variant is up-regulated initially, followed by up-regulation of the IGF-IEa splice variant at later time points. Up-regulation of IGF-IEb mRNA correlates with markers of satellite cell and myoblast proliferation, whereas up-regulation of IGF-IEa mRNA is correlated with differentiation to mature myofibers. Due to the apparent role of IGF-IEb up-regulation in muscle remodeling, IGF-IEb mRNA was also named mechano-growth factor (MGF). A synthetically manufactured peptide (also termed MGF) corresponding to the 24 most C-terminal residues of IGF-IEb has been shown to promote cellular proliferation and survival. However, no analogous peptide product of the Igf1 gene has been identified in or isolated from cultured cells, their conditioned medium, or in vivo animal tissues or biological fluids. This review will discuss the relationship of the Igf1 gene to MGF and will differentiate actions of synthetic MGF from any known product of Igf1. Additionally, the role of MGF in satellite cell activation, aging, neuroprotection, and signaling will be discussed. A survey of outstanding questions relating to MGF will also be provided.
Collapse
Affiliation(s)
- Ronald W Matheny
- U.S. Army Research Institute of Environmental Medicine, Military Performance Division, 15 Kansas Street, Building 42, Natick, Massachusetts 01760, USA.
| | | | | |
Collapse
|