1
|
Pisani A, Rolesi R, Mohamed-Hizam V, Montuoro R, Paludetti G, Giorgio C, Cocchiaro P, Brandolini L, Detta N, Sirico A, Amendola PG, Novelli R, Aramini A, Allegretti M, Paciello F, Grassi C, Fetoni AR. Early transtympanic administration of rhBDNF exerts a multifaceted neuroprotective effect against cisplatin-induced hearing loss. Br J Pharmacol 2025; 182:546-563. [PMID: 39390645 DOI: 10.1111/bph.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Cisplatin-induced sensorineural hearing loss is a significant clinical challenge. Although the potential effects of brain-derived neurotrophic factor (BDNF) have previously been investigated in some ototoxicity models, its efficacy in cisplatin-induced hearing loss remains uncertain. This study aimed to investigate the therapeutic potential of recombinant human BDNF (rhBDNF) in protecting cells against cisplatin-induced ototoxicity. EXPERIMENTAL APPROACH Using an in vivo model of cisplatin-induced hearing loss, we investigated the beneficial effects of transtympanic administration of rhBDNF in a thermogel solution on hearing function and cochlear injury, using electrophysiological, morphological, immunofluorescence and molecular analyses. KEY RESULTS Our data showed that local rhBDNF treatment counteracted hearing loss in rats receiving cisplatin by preserving synaptic connections in the cochlear epithelium and protecting hair cells (HCs) and spiral ganglion neurons (SGNs) against cisplatin-induced cell death. Specifically, rhBDNF maintains the balance of its receptor levels (pTrkB and p75), boosting TrkB-CREB pro-survival signalling and reducing caspase 3-dependent apoptosis in the cochlea. Additionally, it activates antioxidant mechanisms while inhibiting inflammation and promoting vascular repair. CONCLUSION AND IMPLICATIONS Collectively, we demonstrated that early transtympanic treatment with rhBDNF plays a multifaceted protective role against cisplatin-induced ototoxicity, thus holding promise as a novel potential approach to preserve hearing in adult and paediatric patients undergoing cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rolando Rolesi
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Giorgio
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Pasquale Cocchiaro
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Laura Brandolini
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Anna Sirico
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Rubina Novelli
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
2
|
Wong EC, Lopez IA, Ishiyama A, Ishiyama G. Expression of Brain-Derived Neurotrophic Factor in Human Spiral Ganglia Neurons after Cochlear Implantation. Otol Neurotol 2024; 45:326-333. [PMID: 38238917 PMCID: PMC10922350 DOI: 10.1097/mao.0000000000004104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is an important factor in the development and neuroprotection of afferent auditory pathways. In this study, we investigated the expression of BDNF in the afferent auditory pathway after cochlear implantation (CI), hypothesizing that electrical stimulation after CI stimulates BDNF expression in the afferent auditory pathway. METHODS Archival human temporal bones from eight patients with a history of CI and five patients with normal hearing (ages 65-93 years old) were studied. Temporal bone specimens were immunoreacted with rabbit polyclonal antibodies against BDNF and mouse monoclonal antibodies against pan-neurofilaments. In cases of unilateral CI, the BDNF expression was compared with the contralateral unimplanted ear and normal temporal bones without hearing loss. RESULTS BDNF immunoreactivity (IR) localized to the spiral ganglion neurons (SGNs) somata and the surrounding satellite cells. BDNF-IR in the spiral ganglia was similar in the apical, middle, and basal hook regions. Neurofilament IR localized to SGN nerve fibers in both implanted and unimplanted cochleae. BDNF-IR in the SGN and satellite cells was significantly increased in the implanted specimens compared with the unimplanted specimens ( p < 0.05) and the normal hearing specimens ( p < 0.05). BDNF-IR expression was similar in the unimplanted cochlea and in the normal cochlea. BDNF protein expression was increased despite complete loss of the organ of Corti hair cells and supporting cells. Even in the cases of CI with a 6-mm first-generation electrode, BDNF expression was upregulated throughout the cochlea. CONCLUSIONS BDNF expression in the SGN appears to be upregulated by the electrical stimulation from CI. This study provides evidence that the electrical stimulation from CI may stimulate the expression of BDNF, playing a neuroprotective role in the rehabilitation of hearing in the deafened ear.
Collapse
Affiliation(s)
| | | | | | - Gail Ishiyama
- UCLA Department of Head and Neck Surgery
- UCLA Department of Neurology
| |
Collapse
|
3
|
Liu Y, Yang L, Singh S, Beyer LA, Prieskorn DM, Swiderski DL, Groves AK, Raphael Y. Combinatorial Atoh1, Gfi1, Pou4f3, and Six1 gene transfer induces hair cell regeneration in the flat epithelium of mature guinea pigs. Hear Res 2024; 441:108916. [PMID: 38103445 PMCID: PMC11223172 DOI: 10.1016/j.heares.2023.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Flat epithelium (FE) is a condition characterized by the loss of both hair cells (HCs) and supporting cells and the transformation of the organ of Corti into a simple flat or cuboidal epithelium, which can occur after severe cochlear insults. The transcription factors Gfi1, Atoh1, Pou4f3, and Six1 (GAPS) play key roles in HC differentiation and survival in normal ears. Previous work using a single transcription factor, Atoh1, to induce HC regeneration in mature ears in vivo usually produced very few cells and failed to produce HCs in severely damaged organs of Corti, especially those with FE. Studies in vitro suggested combinations of transcription factors may be more effective than any single factor, thus the current study aims to examine the effect of co-overexpressing GAPS genes in deafened mature guinea pig cochleae with FE. Deafening was achieved through the infusion of neomycin into the perilymph, leading to the formation of FE and substantial degeneration of nerve fibers. Seven days post neomycin treatment, adenovirus vectors carrying GAPS were injected into the scala media and successfully expressed in the FE. One or two months following GAPS inoculation, cells expressing Myosin VIIa were observed in regions under the FE (located at the scala tympani side of the basilar membrane), rather than within the FE. The number of cells, which we define as induced HCs (iHCs), was not significantly different between one and two months, but the larger N at two months made it more apparent that there were significantly more iHCs in GAPS treated animals than in controls. Additionally, qualitative observations indicated that ears with GAPS gene expression in the FE had more nerve fibers than FE without the treatment. In summary, our results showed that co-overexpression of GAPS enhances the potential for HC regeneration in a severe lesion model of FE.
Collapse
Affiliation(s)
- Yujie Liu
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology-Head and Neck Surgery, Beijing 100730, China
| | - Lin Yang
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Otolaryngology-Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Cutri RM, Lin J, Nguyen NV, Shakya D, Shibata SB. Neomycin-Induced Deafness in Neonatal Mice. J Neurosci Methods 2023; 391:109852. [PMID: 37031766 DOI: 10.1016/j.jneumeth.2023.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Hearing impairment is a rising public health issue, and current therapeutics fail to restore normal auditory sensation. Animal models are essential to a better understanding of the pathophysiology of deafness and developing therapeutics to restore hearing. NEW METHODS Wild-type CBA/CaJ neonatal mice P2-5 were used in this study. Neomycin suspension (500nl of 50 or 100mg/ml) was micro-injected into the endolymphatic space. Cochlear morphology was examined 3 and 7 days after injection; hair cell (HC) loss, supporting cell morphology, and neurite denervation pattern were assessed with whole-mounts. At 2 and 4 weeks post-injection, the spiral ganglion neuron (SGN) density was analyzed with cryostat sections. Audiometric responses were measured with auditory brain response (ABR) at 4 weeks. RESULTS Rapid and complete degeneration of the inner and outer HCs occurred as early as 3 days post-injection. Subsequently, time- and dose-dependent degeneration patterns were observed along the axis of the cochlear membranous labyrinth forming a flat epithelium. Likewise, the SGN histology demonstrated significant cell density reduction at 2 and 4 weeks. The ABR threshold measurements confirmed profound deafness at 4 weeks. COMPARISON WITH EXISTING METHODS Compared to previously described local and systemic aminoglycoside injections, this method provides a reliable, robust, and rapid deafening model with a single infusion of neomycin in neonatal mice. This model also allows for investigating the effects of inner ear damage during auditory maturation. CONCLUSIONS A single injection of neomycin into the endolymphatic space induces robust HC loss and denervation in neonatal mice.
Collapse
Affiliation(s)
- Raffaello M Cutri
- Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Joshua Lin
- Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Nhi V Nguyen
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Dejan Shakya
- Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Seiji B Shibata
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
5
|
Diaz Quiroz JF, Siskel LD, Rosenthal JJC. Site-directed A → I RNA editing as a therapeutic tool: moving beyond genetic mutations. RNA (NEW YORK, N.Y.) 2023; 29:498-505. [PMID: 36669890 PMCID: PMC10019371 DOI: 10.1261/rna.079518.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adenosine deamination by the ADAR family of enzymes is a natural process that edits genetic information as it passes through messenger RNA. Adenosine is converted to inosine in mRNAs, and this base is interpreted as guanosine during translation. Realizing the potential of this activity for therapeutics, a number of researchers have developed systems that redirect ADAR activity to new targets, ones that are not normally edited. These site-directed RNA editing (SDRE) systems can be broadly classified into two categories: ones that deliver an antisense RNA oligonucleotide to bind opposite a target adenosine, creating an editable structure that endogenously expressed ADARs recognize, and ones that tether the catalytic domain of recombinant ADAR to an antisense RNA oligonucleotide that serves as a targeting mechanism, much like with CRISPR-Cas or RNAi. To date, SDRE has been used mostly to try and correct genetic mutations. Here we argue that these applications are not ideal SDRE, mostly because RNA edits are transient and genetic mutations are not. Instead, we suggest that SDRE could be used to tune cell physiology to achieve temporary outcomes that are therapeutically advantageous, particularly in the nervous system. These include manipulating excitability in nociceptive neural circuits, abolishing specific phosphorylation events to reduce protein aggregation related to neurodegeneration or reduce the glial scarring that inhibits nerve regeneration, or enhancing G protein-coupled receptor signaling to increase nerve proliferation for the treatment of sensory disorders like blindness and deafness.
Collapse
Affiliation(s)
- Juan F Diaz Quiroz
- Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Louise D Siskel
- Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Joshua J C Rosenthal
- Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
6
|
Michna A, Pomorska A, Ozcan O. Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules 2023; 13:biom13040609. [PMID: 37189357 DOI: 10.3390/biom13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
Collapse
|
7
|
Abstract
INTRODUCTION More than 5% of the world's population have a disabling hearing loss which can be managed by hearing aids or implanted electrical devices. However, outcomes are highly variable, and the sound perceived by recipients is far from perfect. Sparked by the discovery of progenitor cells in the cochlea and rapid progress in drug delivery to the cochlea, biological and pharmaceutical therapies are currently in development to improve the function of the cochlear implant or eliminate the need for it altogether. AREAS COVERED This review highlights progress in emerging regenerative strategies to restore hearing and adjunct therapies to augment the cochlear implant. Novel approaches include the reprogramming of progenitor cells to restore the sensory hair cell population in the cochlea, gene therapy and gene editing to treat hereditary and acquired hearing loss. A detailed review of optogenetics is also presented as a technique that could enable optical stimulation of the spiral ganglion neurons, replacing or complementing electrical stimulation. EXPERT OPINION Increasing evidence of substantial reversal of hearing loss in animal models, alongside rapid advances in delivery strategies to the cochlea and learnings from clinical trials will amalgamate into a biological or pharmaceutical therapy to replace or complement the cochlear implant.
Collapse
Affiliation(s)
- Elise Ajay
- Bionics Institute, East Melbourne, Victoria, Australia.,University of Melbourne, Department of Engineering
| | | | - Rachael Richardson
- Bionics Institute, East Melbourne, Victoria, Australia.,University of Melbourne, Medical Bionics Department, Parkville, Victoria, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), East Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022; 14:814528. [PMID: 35250542 PMCID: PMC8891613 DOI: 10.3389/fnagi.2022.814528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one on the sensory deficit profiles. Outer HCs show a progressive loss in a basal-to-apical gradient, and inner HCs show a loss in a apex-to-base progression that results in ARHL at high frequencies after 70 years of age. In early neonates, SGNs innervation of cochlear HCs is maintained. Loss of SGNs results in a considerable decrease (~50% or more) of cochlear nuclei in neonates, though the loss is milder in older mice and humans. The dorsal cochlear nuclei (fusiform neurons) project directly to the inferior colliculi while most anterior cochlear nuclei reach the SOC. Reducing the number of neurons in the medial nucleus of the trapezoid body (MNTB) affects the interactions with the lateral superior olive to fine-tune ipsi- and contralateral projections that may remain normal in mice, possibly humans. The inferior colliculi receive direct cochlear fibers and second-order fibers from the superior olivary complex. Loss of the second-order fibers leads to hearing loss in mice and humans. Although ARHL may arise from many complex causes, HC degeneration remains the more significant problem of hearing restoration that would replace the cochlear implant. The review presents recent findings of older humans and mice with hearing loss.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci 2022; 15:814891. [PMID: 35069120 PMCID: PMC8766678 DOI: 10.3389/fncel.2021.814891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most prevalent sensory deficits in humans, and approximately 360 million people worldwide are affected. The current treatment option for severe to profound hearing loss is cochlear implantation (CI), but its treatment efficacy is related to the survival of spiral ganglion neurons (SGNs). SGNs are the primary sensory neurons, transmitting complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus. In mammals, SGNs have very limited regeneration ability, and SGN loss causes irreversible hearing loss. In most cases of SNHL, SGN damage is the dominant pathogenesis, and it could be caused by noise exposure, ototoxic drugs, hereditary defects, presbycusis, etc. Tremendous efforts have been made to identify novel treatments to prevent or reverse the damage to SGNs, including gene therapy and stem cell therapy. This review summarizes the major causes and the corresponding mechanisms of SGN loss and the current protection strategies, especially gene therapy and stem cell therapy, to promote the development of new therapeutic methods.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Interaction of micropatterned topographical and biochemical cues to direct neurite growth from spiral ganglion neurons. Hear Res 2021; 409:108315. [PMID: 34343850 DOI: 10.1016/j.heares.2021.108315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Functional outcomes with neural prosthetic devices, such as cochlear implants, are limited in part due to physical separation between the stimulating elements and the neurons they stimulate. One strategy to close this gap aims to precisely guide neurite regeneration to position the neurites in closer proximity to electrode arrays. Here, we explore the ability of micropatterned biochemical and topographic guidance cues, singly and in combination, to direct the growth of spiral ganglion neuron (SGN) neurites, the neurons targeted by cochlear implants. Photopolymerization of methacrylate monomers was used to form unidirectional topographical features of ridges and grooves in addition to multidirectional patterns with 90o angle turns. Microcontact printing was also used to create similar uni- and multi-directional patterns of peptides on polymer surfaces. Biochemical cues included peptides that facilitate (laminin, LN) or repel (EphA4-Fc) neurite growth. On flat surfaces, SGN neurites preferentially grew on LN-coated stripes and avoided EphA4-Fc-coated stripes. LN or EphA4-Fc was selectively adsorbed onto the ridges or grooves to test the neurite response to a combination of topographical and biochemical cues. Coating the ridges with EphA4-Fc and grooves with LN lead to enhanced SGN alignment to topographical patterns. Conversely, EphA4-Fc coating on the grooves or LN coating on the ridges tended to disrupt alignment to topographical patterns. SGN neurites respond to combinations of topographical and biochemical cues and surface patterning that leverages both cues enhance guided neurite growth.
Collapse
|
11
|
Radeloff A, Nada N, El Mahallawi T, Kolkaila E, Vollmer M, Rak K, Hagen R, Schendzielorz P. Transplantation of adipose-derived stromal cells protects functional and morphological auditory nerve integrity in a model of cochlear implantation. Neuroreport 2021; 32:776-782. [PMID: 33994529 DOI: 10.1097/wnr.0000000000001651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cochlear implants are considered the gold standard therapy for subjects with severe hearing loss and deafness. Cochlear implants bypass the damaged hair cells and directly stimulate spiral ganglion neurons (SGNs) of the auditory nerve. Hence, the presence of functional SGNs is crucial for speech perception in electric hearing with a cochlear implant. In deaf individuals, SGNs progressively degenerate due to the lack of neurotrophic support, normally provided by sensory cells of the inner ear. Adipose-derived stromal cells (ASCs) are known to produce neurotrophic factors. In a guinea pig model of sensory hearing loss and cochlear implantation, ASCs were autologously transplanted into the scala tympani prior to insertion of a cochlear implant on one side. Electrically evoked auditory brain stem responses (eABR) were recorded 8 weeks after cochlear implantation. At conclusion of the experiment, the cochleae were histologically evaluated. Compared to untreated control animals, transplantation of ASCs resulted in an increased number of SGNs and their peripheral neurites. In ASC-transplanted animals, mean eABR thresholds were lower and suprathreshold amplitudes larger, suggesting a larger population of intact auditory nerve fibers. Moreover, when compared to controls, amplitude-level functions of eABRs in ASC transplanted animals demonstrated steeper slopes in response to increasing interphase gaps (IPGs), indicative of better functionality of the auditory nerve. In summary, results suggest that transplantation of autologous ASCs into the deaf inner ear may have protective effects on the survival of SGNs and their peripheral processes and may thus contribute to long-term benefits in speech discrimination performance in cochlear implant subjects.
Collapse
Affiliation(s)
- Andreas Radeloff
- Division of Oto-Rhino-Laryngology, Head and Neck Surgery, Carl von Ossietzky-University
- Cluster of excellence "Hearing 4 All"
- Research Center Neurosensory Science, Oldenburg, Germany
| | - Nashwa Nada
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Tanta University Hospitals, Tanta, Egypt
| | - Trandil El Mahallawi
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Tanta University Hospitals, Tanta, Egypt
| | - Enaas Kolkaila
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Tanta University Hospitals, Tanta, Egypt
| | - Maike Vollmer
- Department of Otol-Rhino-Laryngology, Head and Neck Surgery, University Magdeburg and Leibniz Institute for Neurobiology, Magdeburg
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Würzburg, Germany
| | - Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Würzburg, Germany
| |
Collapse
|
12
|
Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B. Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Fac Rev 2021; 10:47. [PMID: 34131657 PMCID: PMC8170689 DOI: 10.12703/r/10-47] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We review the molecular basis of three related basic helix–loop–helix (bHLH) genes (Neurog1, Neurod1, and Atoh1) and upstream regulators Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires early expression of Neurog1, followed by its downstream target Neurod1, which downregulates Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 and Neurog1 expression for various aspects of development. Several experiments show a partial uncoupling of Atoh1/Neurod1 (spiral ganglia and cochlea) and Atoh1/Neurog1/Neurod1 (cochlear nuclei). In this review, we integrate the cellular and molecular mechanisms that regulate the development of auditory system and provide novel insights into the restoration of hearing loss, beyond the limited generation of lost sensory neurons and hair cells.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci 2021; 22:ijms22084189. [PMID: 33919542 PMCID: PMC8074135 DOI: 10.3390/ijms22084189] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix–loop–helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons’ fate into “hair cells”, highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of “intraganglionic” HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
| | - Gabriela Pavlínková
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czechia;
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
- Correspondence:
| |
Collapse
|
14
|
Gärtner L, Klötzer K, Lenarz T, Scheper V. Correlation of Electrically Evoked Compound Action Potential Amplitude Growth Function Slope and Anamnestic Parameters in Cochlear Implant Patients-Identification of Predictors for the Neuronal Health Status. Life (Basel) 2021; 11:life11030203. [PMID: 33807687 PMCID: PMC7999542 DOI: 10.3390/life11030203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
Cochlear implants (CI) are the treatment of choice in profoundly deaf patients. Measuring the electrically evoked compound action potential (ECAP) has become an important tool for verifying the function of the spiral ganglion neurons (SGN), which are the target cells of the CI stimulation. ECAP measurement is only possible after electrode insertion. No information about the neuronal health status is available before cochlear implantation. We investigated possible correlations between the ECAP amplitude growth function (AGF) slope and anamnestic parameters to identify possible predictors for SGN health status and therefore for CI outcome. The study included patients being implanted with various electrode array lengths. Correlation analysis was performed for the mean AGF slope of the whole array, for separate electrodes as well as for grouped electrodes of the apical, medial, and basal region, with duration of deafness, age at implantation, residual hearing (grouped for electrode length), and etiology. The mean ECAP AGF slopes decreased from apical to basal. They were not correlated to the length of the electrode array or any etiology. For the mean of the full array or when grouped for the apical, middle, and basal part, the ECAP AGF slope was negatively correlated to the duration of hearing loss and the age at implantation. Since a significant negative correlation of the ECAP AGF slope and age at cochlear implantation and duration of deafness was observed, this study supports the statement that early implantation of a CI is recommended for sensorineural hearing loss. Additional factors such as the cochlear coverage and insertion angle influence the ECAP AGF slope and performance of the patient and should be included in future multifactorial analysis to study predictive parameters for the CI outcome.
Collapse
Affiliation(s)
- Lutz Gärtner
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (K.K.); (T.L.)
| | - Katharina Klötzer
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (K.K.); (T.L.)
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (K.K.); (T.L.)
- Cluster of Excellence “Hearing4All”, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (K.K.); (T.L.)
- Cluster of Excellence “Hearing4All”, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-4369
| |
Collapse
|
15
|
Li CY, Mittal R, Bergman J, Mittal J, Eshraghi AA. Recent advancements toward gapless neural-electrode interface post-cochlear implantation. Neural Regen Res 2021; 16:1805-1806. [PMID: 33510086 PMCID: PMC8328784 DOI: 10.4103/1673-5374.306085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Crystal Y Li
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jenna Bergman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
16
|
Schvartz-Leyzac KC, Colesa DJ, Buswinka CJ, Rabah AM, Swiderski DL, Raphael Y, Pfingst BE. How electrically evoked compound action potentials in chronically implanted guinea pigs relate to auditory nerve health and electrode impedance. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3900. [PMID: 33379919 PMCID: PMC7863685 DOI: 10.1121/10.0002882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
This study examined how multiple measures based on the electrically evoked compound action potential (ECAP) amplitude-growth functions (AGFs) were related to estimates of neural [spiral ganglion neuron (SGN) density and cell size] and electrode impedance measures in 34 specific pathogen free pigmented guinea pigs that were chronically implanted (4.9-15.4 months) with a cochlear implant electrode array. Two interphase gaps (IPGs) were used for the biphasic pulses and the effect of the IPG on each ECAP measure was measured ("IPG effect"). When using a stimulus with a constant IPG, SGN density was related to the across-subject variance in ECAP AGF linear slope, peak amplitude, and N1 latency. The SGN density values also help to explain a significant proportion of variance in the IPG effect for AGF linear slope and peak amplitude measures. Regression modeling revealed that SGN density was the primary dependent variable contributing to across-subject variance for ECAP measures; SGN cell size did not significantly improve the fitting of the model. Results showed that simple impedance measures were weakly related to most ECAP measures but did not typically improve the fit of the regression model.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Deborah J Colesa
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Christopher J Buswinka
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Andrew M Rabah
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| |
Collapse
|
17
|
He L, Guo JY, Liu K, Wang GP, Gong SS. Research progress on flat epithelium of the inner ear. Physiol Res 2020; 69:775-785. [PMID: 32901490 DOI: 10.33549/physiolres.934447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sensorineural hearing loss and vertigo, resulting from lesions in the sensory epithelium of the inner ear, have a high incidence worldwide. The sensory epithelium of the inner ear may exhibit extreme degeneration and is transformed to flat epithelium (FE) in humans and mice with profound sensorineural hearing loss and/or vertigo. Various factors, including ototoxic drugs, noise exposure, aging, and genetic defects, can induce FE. Both hair cells and supporting cells are severely damaged in FE, and the normal cytoarchitecture of the sensory epithelium is replaced by a monolayer of very thin, flat cells of irregular contour. The pathophysiologic mechanism of FE is unclear but involves robust cell division. The cellular origin of flat cells in FE is heterogeneous; they may be transformed from supporting cells that have lost some features of supporting cells (dedifferentiation) or may have migrated from the flanking region. The epithelial-mesenchymal transition may play an important role in this process. The treatment of FE is challenging given the severe degeneration and loss of both hair cells and supporting cells. Cochlear implant or vestibular prosthesis implantation, gene therapy, and stem cell therapy show promise for the treatment of FE, although many challenges remain to be overcome.
Collapse
Affiliation(s)
- L He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China. ,
| | | | | | | | | |
Collapse
|
18
|
Schulze J, Staecker H, Wedekind D, Lenarz T, Warnecke A. Expression pattern of brain-derived neurotrophic factor and its associated receptors: Implications for exogenous neurotrophin application. Hear Res 2020; 413:108098. [PMID: 33143996 DOI: 10.1016/j.heares.2020.108098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/24/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023]
Abstract
The application of neurotrophins such as brain-derived neurotrophic factor (BDNF) is a promising pharmacological approach in cochlear implant research. Several in vitro and in vivo studies demonstrated that treatment with neurotrophins support the spiral ganglion neuron (SGN) survival and the synapses. Of the more than 40 companies that are working in the field of inner ear therapeutics, only one company is currently advancing BDNF towards clinical translation. Thus, there are no approved clinical therapies with neurotrophins, their precursors or neurotrophin-like substances. For a better understanding of the mechanisms of BDNF in the inner ear, we analysed the expression of mature BDNF (mBDNF), its pro-form proBDNF and their respective receptors the low affinity p75 neurotrophin receptor (p75NTR) and the neurotrophic receptor tyrosine kinase 2 (NTRK2). In the adult murine inner ear, mBDNF is expressed in the inner and outer hair cells (IHC and OHC) of the organ of Corti and in the spiral ganglion of the Rosenthal's canal, whereas proBDNF is only detected in the supporting cells below the OHC. The corresponding receptors NTRK2 and p75NTR are expressed in the spiral ganglion whereof p75NTR is stronger expressed. For more insights in the effects of mBDNF and proBDNF on inner ear specific cells, we treated primary dissociated SGN with different concentrations of mBDNF and proBDNF alone and in combination. Interestingly, treatment with proBDNF is not toxic for SGN but simultaneously not protective. However, combined treatment of mBDNF and proBDNF maintained and perhaps slightly increased the protective effect of mBDNF. Thus, the mixture of mBDNF and proBDNF could be the new direction for the development of BDNF-based therapeutics in cochlear implantation and could represent more precisely the natural environment.
Collapse
Affiliation(s)
- Jennifer Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1).
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Dirk Wedekind
- Department of experimental animal science, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1)
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1)
| |
Collapse
|
19
|
Yamoah EN, Li M, Shah A, Elliott KL, Cheah K, Xu PX, Phillips S, Young SM, Eberl DF, Fritzsch B. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res Rev 2020; 59:101042. [PMID: 32173536 PMCID: PMC7261488 DOI: 10.1016/j.arr.2020.101042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit. ARHL reduces the quality of life of the growing population, setting seniors up for the enhanced mental decline. The size of the needy population, the structural deficit, and a likely research strategy for effective treatment of chronic neurosensory hearing in the elderly are needed. Although there has been profound advancement in auditory regenerative research, there remain multiple challenges to restore hearing loss. Thus, additional investigations are required, using novel tools. We propose how the (1) flat epithelium, remaining after the organ of Corti has deteriorated, can be converted to the repaired-sensory epithelium, using Sox2. This will include (2) developing an artificial gene regulatory network transmitted by (3) large viral vectors to the flat epithelium to stimulate remnants of the organ of Corti to restore hair cells. We hope to unite with our proposal toward the common goal, eventually restoring a functional human hearing organ by transforming the flat epithelial cells left after the organ of Corti loss.
Collapse
Affiliation(s)
- Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, USA
| | - Mark Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Karen L Elliott
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Kathy Cheah
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Pin-Xian Xu
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Stacia Phillips
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA; Department of Otolaryngology, Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Daniel F Eberl
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, USA.
| |
Collapse
|
20
|
Schwieger J, Hamm A, Gepp MM, Schulz A, Hoffmann A, Lenarz T, Scheper V. Alginate-encapsulated brain-derived neurotrophic factor-overexpressing mesenchymal stem cells are a promising drug delivery system for protection of auditory neurons. J Tissue Eng 2020; 11:2041731420911313. [PMID: 32341778 PMCID: PMC7168777 DOI: 10.1177/2041731420911313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/08/2020] [Indexed: 12/23/2022] Open
Abstract
The cochlear implant outcome is possibly improved by brain-derived neurotrophic factor treatment protecting spiral ganglion neurons. Implantation of genetically modified mesenchymal stem cells may enable the required long-term brain-derived neurotrophic factor administration. Encapsulation of mesenchymal stem cells in ultra-high viscous alginate may protect the mesenchymal stem cells from the recipient’s immune system and prevent their uncontrolled migration. Alginate stability and survival of mesenchymal stem cells in alginate were evaluated. Brain-derived neurotrophic factor production was measured and its protective effect was analyzed in dissociated rat spiral ganglion neuron co-culture. Since the cochlear implant is an active electrode, alginate–mesenchymal stem cell samples were electrically stimulated and alginate stability and mesenchymal stem cell survival were investigated. Stability of ultra-high viscous-alginate and alginate–mesenchymal stem cells was proven. Brain-derived neurotrophic factor production was detectable and spiral ganglion neuron survival, bipolar morphology, and neurite outgrowth were increased. Moderate electrical stimulation did not affect the mesenchymal stem cell survival and their viability was good within the investigated time frame. Local drug delivery by ultra-high viscous-alginate-encapsulated brain-derived neurotrophic factor–overexpressing mesenchymal stem cells is a promising strategy to improve the cochlear implant outcome.
Collapse
Affiliation(s)
- Jana Schwieger
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Anika Hamm
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Michael M Gepp
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany.,Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - André Schulz
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Andrea Hoffmann
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
| |
Collapse
|
21
|
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394:107955. [PMID: 32331858 DOI: 10.1016/j.heares.2020.107955] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Hearing impairment is a major health and economic concern worldwide. Currently, the cochlear implant (CI) is the standard of care for remediation of severe to profound hearing loss, and in general, contemporary CIs are highly successful. But there is great variability in outcomes among individuals, especially in children, with many CI users deriving much less or even marginal benefit. Much of this variability is related to differences in auditory nerve survival, and there has been substantial interest in recent years in exploring potential therapies to improve survival of the cochlear spiral ganglion neurons (SGN) after deafness. Preclinical studies using osmotic pumps and other approaches in deafened animal models to deliver neurotrophic factors (NTs) directly to the cochlea have shown promising results, especially with Brain-Derived Neurotrophic Factor (BDNF). More recent studies have focused on the use of NT gene therapy to force expression of NTs by target cells within the cochlea. This could provide the means for a one-time treatment to promote long-term NT expression and improve neural survival after deafness. This review summarizes the evidence for the efficacy of exogenous NTs in preventing SGN degeneration after hearing loss and reviews the animal research to date suggesting that NT gene therapy can elicit long-term NT expression in the cochlea, resulting in significantly improved SGN and radial nerve fiber survival after deafness. In addition, we discuss NT gene therapy in other non-auditory applications and consider some of the remaining issues with regard to selecting optimal vectors, timing of treatment, and place/method of delivery, etc. that must be resolved prior to considering clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA.
| | - Omar Akil
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA
| | - Hainan Lang
- Dept. of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Room RS613, Charleston, SC, 29414, USA
| |
Collapse
|
22
|
Hügl S, Scheper V, Gepp MM, Lenarz T, Rau TS, Schwieger J. Coating stability and insertion forces of an alginate-cell-based drug delivery implant system for the inner ear. J Mech Behav Biomed Mater 2019; 97:90-98. [DOI: 10.1016/j.jmbbm.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/01/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
|
23
|
Pinyon JL, von Jonquieres G, Crawford EN, Duxbury M, Al Abed A, Lovell NH, Klugmann M, Wise AK, Fallon JB, Shepherd RK, Birman CS, Lai W, McAlpine D, McMahon C, Carter PM, Enke YL, Patrick JF, Schilder AG, Marie C, Scherman D, Housley GD. Neurotrophin gene augmentation by electrotransfer to improve cochlear implant hearing outcomes. Hear Res 2019; 380:137-149. [DOI: 10.1016/j.heares.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
|
24
|
Houlton J, Abumaria N, Hinkley SFR, Clarkson AN. Therapeutic Potential of Neurotrophins for Repair After Brain Injury: A Helping Hand From Biomaterials. Front Neurosci 2019; 13:790. [PMID: 31427916 PMCID: PMC6688532 DOI: 10.3389/fnins.2019.00790] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Stroke remains the leading cause of long-term disability with limited options available to aid in recovery. Significant effort has been made to try and minimize neuronal damage following stroke with use of neuroprotective agents, however, these treatments have yet to show clinical efficacy. Regenerative interventions have since become of huge interest as they provide the potential to restore damaged neural tissue without being limited by a narrow therapeutic window. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), and their high affinity receptors are actively produced throughout the brain and are involved in regulating neuronal activity and normal day-to-day function. Furthermore, neurotrophins are known to play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and traumatic brain injury (TBI). Unfortunately, exogenous administration of these neurotrophins is limited by a lack of blood-brain-barrier (BBB) permeability, poor half-life, and rapid degradation. Therefore, we have focused this review on approaches that provide a direct and sustained neurotrophic support using pharmacological therapies and mimetics, physical activity, and potential drug delivery systems, including discussion around advantages and limitations for use of each of these systems. Finally, we discuss future directions of biomaterial drug-delivery systems, including the incorporation of heparan sulfate (HS) in conjunction with neurotrophin-based interventions.
Collapse
Affiliation(s)
- Josh Houlton
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Simon F. R. Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, Petone, New Zealand
| | - Andrew N. Clarkson
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
25
|
AAV-Mediated Neurotrophin Gene Therapy Promotes Improved Survival of Cochlear Spiral Ganglion Neurons in Neonatally Deafened Cats: Comparison of AAV2-hBDNF and AAV5-hGDNF. J Assoc Res Otolaryngol 2019; 20:341-361. [PMID: 31222416 PMCID: PMC6646500 DOI: 10.1007/s10162-019-00723-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/15/2019] [Indexed: 01/22/2023] Open
Abstract
Outcomes with contemporary cochlear implants (CI) depend partly upon the survival and condition of the cochlear spiral ganglion (SG) neurons. Previous studies indicate that CI stimulation can ameliorate SG neural degeneration after deafness, and brain-derived neurotrophic factor (BDNF) delivered by an osmotic pump can further improve neural survival. However, direct infusion of BDNF elicits undesirable side effects, and osmotic pumps are impractical for clinical application. In this study, we explored the potential for two adeno-associated viral vectors (AAV) to elicit targeted neurotrophic factor expression in the cochlea and promote improved SG and radial nerve fiber survival. Juvenile cats were deafened prior to hearing onset by systemic aminoglycoside injections. Auditory brainstem responses showed profound hearing loss by 16-18 days postnatal. At ~ 4 weeks of age, AAV2-GFP (green fluorescent protein), AAV5-GFP, AAV2-hBDNF, or AAV5-hGDNF (glial-derived neurotrophic factor) was injected through the round window unilaterally. For GFP immunofluorescence, animals were studied ~ 4 weeks post-injection to assess cell types transfected and their distributions. AAV2-GFP immunofluorescence demonstrated strong expression of the GFP reporter gene in residual inner (IHCs), outer hair cells (OHCs), inner pillar cells, and in some SG neurons throughout the cochlea. AAV5-GFP elicited robust transduction of IHCs and some SG neurons, but few OHCs and supporting cells. After AAV-neurotrophic factor injections, animals were studied ~ 3 months post-injection to evaluate neural survival. AAV5-hGDNF elicited a modest neurotrophic effect, with 6 % higher SG density, but had no trophic effect on radial nerve fiber survival, and undesirable ectopic fiber sprouting occurred. AAV2-hBDNF elicited a similar 6 % increase in SG survival, but also resulted in greatly improved radial nerve fiber survival, with no ectopic fiber sprouting. A further study assessed whether AAV2-hBDNF neurotrophic effects would persist over longer post-injection periods. Animals examined 6 months after virus injection showed substantial neurotrophic effects, with 14 % higher SG density and greatly improved radial nerve fiber survival. Our results suggest that AAV-neurotrophin gene therapy can elicit expression of physiological concentrations of neurotrophins in the cochlea, supporting improved SG neuronal and radial nerve fiber survival while avoiding undesirable side effects. These studies also demonstrate the potential for application of cochlear gene therapy in a large mammalian cochlea comparable to the human cochlea and in an animal model of congenital/early acquired deafness.
Collapse
|
26
|
Liu W, Wang X, Wang M, Wang H. Protection of Spiral Ganglion Neurons and Prevention of Auditory Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:93-107. [DOI: 10.1007/978-981-13-6123-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
27
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
28
|
Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, Lin X. Cochlear Gene Therapy for Sensorineural Hearing Loss: Current Status and Major Remaining Hurdles for Translational Success. Front Mol Neurosci 2018; 11:221. [PMID: 29997477 PMCID: PMC6028713 DOI: 10.3389/fnmol.2018.00221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Sensorineural hearing loss (SNHL) affects millions of people. Genetic mutations play a large and direct role in both congenital and late-onset cases of SNHL (e.g., age-dependent hearing loss, ADHL). Although hearing aids can help moderate to severe hearing loss the only effective treatment for deaf patients is the cochlear implant (CI). Gene- and cell-based therapies potentially may preserve or restore hearing with more natural sound perception, since their theoretical frequency resolution power is much higher than that of cochlear implants. These biologically-based interventions also carry the potential to re-establish hearing without the need for implanting any prosthetic device; the convenience and lower financial burden afforded by such biologically-based interventions could potentially benefit far more SNHL patients. Recently major progress has been achieved in preclinical studies of cochlear gene therapy. This review critically evaluates recent advances in the preclinical trials of gene therapies for SNHL and the major remaining challenges for the development and eventual clinical translation of this novel therapy. The cochlea bears many similarities to the eye for translational studies of gene therapies. Experience gained in ocular gene therapy trials, many of which have advanced to clinical phase III, may provide valuable guidance in improving the chance of success for cochlear gene therapy in human trials. A discussion on potential implications of translational knowledge gleaned from large numbers of advanced clinical trials of ocular gene therapy is therefore included.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sun Myoung Kim
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenwen Wang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yong Feng
- Xiangya School of Medicine, Changsha, China
| | - Weijia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
29
|
Photopolymerized Microfeatures Guide Adult Spiral Ganglion and Dorsal Root Ganglion Neurite Growth. Otol Neurotol 2018; 39:119-126. [PMID: 29227456 DOI: 10.1097/mao.0000000000001622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HYPOTHESIS Microtopographical patterns generated by photopolymerization of methacrylate polymer systems will direct growth of neurites from adult neurons, including spiral ganglion neurons (SGNs). BACKGROUND Cochlear implants (CIs) provide hearing perception to patients with severe to profound hearing loss. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by spread of the electrical currents in the inner ear. Directing the regrowth of SGN peripheral processes towards stimulating electrodes could help reduce current spread and improve spatial resolution provided by the CI. Previous work has demonstrated that micro- and nano-scale patterned surfaces precisely guide the growth of neurites from a variety of neonatal neurons including SGNs. Here, we sought to determine the extent to which adult neurons likewise respond to these topographical surface features. METHODS Photopolymerization was used to fabricate methacrylate polymer substrates with micropatterned surfaces of varying amplitudes and periodicities. Dissociated adult dorsal root ganglion neurons (DRGNs) and SGNs were cultured on these surfaces and the alignment of the neurite processes to the micropatterns was determined. RESULTS Neurites from both adult DRGNs and SGNs significantly aligned to the patterned surfaces similar to their neonatal counterparts. Further DRGN and SGN neurite alignment increased as the amplitude of the microfeatures increased. Decreased pattern periodicity also improved neurite alignment. CONCLUSION Microscale surface topographic features direct the growth of adult SGN neurites. Topographical features could prove useful for guiding growth of SGN peripheral axons towards a CI electrode array.
Collapse
|
30
|
Abstract
Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear. As a consequence, current devices are limited through 1) low frequency resolution, hence sub-optimal sound quality and 2), large stimulation currents, hence high energy consumption (responsible for significant battery costs and for impeding the development of fully implantable systems). A recently completed, multinational and interdisciplinary project called NANOCI aimed at overcoming current limitations by creating a gapless interface between auditory nerve fibers and the cochlear implant electrode array. This ambitious goal was achieved in vivo by neurotrophin-induced attraction of neurites through an intracochlear gel-nanomatrix onto a modified nanoCI electrode array located in the scala tympani of deafened guinea pigs. Functionally, the gapless interface led to lower stimulation thresholds and a larger dynamic range in vivo, and to reduced stimulation energy requirement (up to fivefold) in an in vitro model using auditory neurons cultured on multi-electrode arrays. In conclusion, the NANOCI project yielded proof of concept that a gapless interface between auditory neurons and cochlear implant electrode arrays is feasible. These findings may be of relevance for the development of future CI systems with better sound quality and performance and lower energy consumption. The present overview/review paper summarizes the NANOCI project history and highlights achievements of the individual work packages.
Collapse
|
31
|
Kempfle JS, Nguyen K, Hamadani C, Koen N, Edge AS, Kashemirov BA, Jung DH, McKenna CE. Bisphosphonate-Linked TrkB Agonist: Cochlea-Targeted Delivery of a Neurotrophic Agent as a Strategy for the Treatment of Hearing Loss. Bioconjug Chem 2018; 29:1240-1250. [PMID: 29485861 DOI: 10.1021/acs.bioconjchem.8b00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hearing loss affects more than two-thirds of the elderly population, and more than 17% of all adults in the U.S. Sensorineural hearing loss related to noise exposure or aging is associated with loss of inner ear sensory hair cells (HCs), cochlear spiral ganglion neurons (SGNs), and ribbon synapses between HCs and SGNs, stimulating intense interest in therapies to regenerate synaptic function. 7,8-Dihydroxyflavone (DHF) is a selective and potent agonist of tropomyosin receptor kinase B (TrkB) and protects the neuron from apoptosis. Despite evidence that TrkB agonists can promote survival of SGNs, local delivery of drugs such as DHF to the inner ear remains a challenge. We previously demonstrated in an animal model that a fluorescently labeled bisphosphonate, 6-FAM-Zol, administered to the round window membrane penetrated the membrane and diffused throughout the cochlea. Given their affinity for bone mineral, including cochlear bone, bisphosphonates offer an intriguing modality for targeted delivery of neurotrophic agents to the SGNs to promote survival, neurite outgrowth, and, potentially, regeneration of synapses between HCs and SGNs. The design and synthesis of a bisphosphonate conjugate of DHF (Ris-DHF) is presented, with a preliminary evaluation of its neurotrophic activity. Ris-DHF increases neurite outgrowth in vitro, maintains this ability after binding to hydroxyapatite, and regenerates synapses in kainic acid-damaged cochlear organ of Corti explants dissected in vitro with attached SGNs. The results suggest that bisphosphonate-TrkB agonist conjugates have promise as a novel approach to targeted delivery of drugs to treat sensorineural hearing loss.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States.,Department of Otolaryngology , University of Tübingen Medical Center , Tübingen 72076 , Germany
| | - Kim Nguyen
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0744 , United States
| | - Christine Hamadani
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Nicholas Koen
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Albert S Edge
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Boris A Kashemirov
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0744 , United States
| | - David H Jung
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Charles E McKenna
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0744 , United States
| |
Collapse
|
32
|
Noda T, Meas SJ, Nogami J, Amemiya Y, Uchi R, Ohkawa Y, Nishimura K, Dabdoub A. Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy. Front Cell Dev Biol 2018; 6:16. [PMID: 29492404 PMCID: PMC5817057 DOI: 10.3389/fcell.2018.00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 01/22/2023] Open
Abstract
Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs). The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs.
Collapse
Affiliation(s)
- Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Steven J Meas
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yutaka Amemiya
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ryutaro Uchi
- Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koji Nishimura
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Hearing Communication Medical Center, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Schendzielorz P, Vollmer M, Rak K, Wiegner A, Nada N, Radeloff K, Hagen R, Radeloff A. Adipose-derived stromal cells enhance auditory neuron survival in an animal model of sensory hearing loss. Cytotherapy 2017; 19:1197-1207. [DOI: 10.1016/j.jcyt.2017.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/27/2022]
|
34
|
Wang GP, Basu I, Beyer LA, Wong HT, Swiderski DL, Gong SS, Raphael Y. Severe streptomycin ototoxicity in the mouse utricle leads to a flat epithelium but the peripheral neural degeneration is delayed. Hear Res 2017; 355:33-41. [PMID: 28931463 DOI: 10.1016/j.heares.2017.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/21/2017] [Accepted: 09/08/2017] [Indexed: 01/15/2023]
Abstract
The damaged vestibular sensory epithelium of mammals has a limited capacity for spontaneous hair cell regeneration, which largely depends on the transdifferentiation of surviving supporting cells. Little is known about the response of vestibular supporting cells to a severe insult. In the present study, we evaluated the impact of a severe ototoxic insult on the histology of utricular supporting cells and the changes in innervation that ensued. We infused a high dose of streptomycin into the mouse posterior semicircular canal to induce a severe lesion in the utricle. Both scanning electron microscopy and light microscopy of plastic sections showed replacement of the normal cytoarchitecture of the epithelial layer with a flat layer of cells in most of the samples. Immunofluorescence staining showed numerous cells in the severely damaged epithelial layer that were negative for hair cell and supporting cell markers. Nerve fibers under the flat epithelium had high density at the 1 month time point but very low density by 3 months. Similarly, the number of vestibular ganglion neurons was unchanged at 1 month after the lesion, but was significantly lower at 3 months. We therefore determined that the mouse utricular epithelium turns into a flat epithelium after a severe lesion, but the degeneration of neural components is slow, suggesting that treatments to restore balance by hair cell regeneration, stem cell therapy or vestibular prosthesis implantation will likely benefit from the short term preservation of the neural substrate.
Collapse
Affiliation(s)
- Guo-Peng Wang
- Department of Otolaryngology - Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ishani Basu
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiu Tung Wong
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shu-Sheng Gong
- Department of Otolaryngology - Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Regenerative medicine in hearing recovery. Cytotherapy 2017; 19:909-915. [DOI: 10.1016/j.jcyt.2017.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
36
|
Bojrab D, Zhang B, Jiang H, Zhang L, Cohen DS, Luo X, Hu Z. Expression of Oligodendrocyte Marker during Peripheral-Central Transitional Zone Formation of the Postnatal Mouse Cochlear Nerve. Otolaryngol Head Neck Surg 2017; 157:488-492. [PMID: 28695768 DOI: 10.1177/0194599817718806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective To better understand oligodendrocyte protein expression along the mouse cochlear nerve in postnatal mice. Study Design In vivo murine study. Setting Research laboratory. Subjects and Methods Swiss Webster mice used at multiple postnatal days (0, 1, 3, 5, 7, 8, 10, 14, 30, and 60). There were 5 replicates at each postnatal day. Cryosection was done to produce sections that included the cochlear nucleus, cochlear nerve, and cochlea in a single sample. Differential interference contrast (DIC) microscopy and immunofluorescence with antibodies specific to the oligodendrocyte protein Olig2 were used to study the cochlear nerve of Swiss Webster mice at postnatal days. Results The myelination of central nervous system projections initiates in close proximity to the peripheral nervous system-central nervous system transitional zone (PCTZ), and oligodendrocytes in neonatal mice are seen with immunohistochemistry peripheral to the DIC-PCTZ interface. Conclusions As the PCTZ migrates from the brain to the cochlea, oligodendrocytes are a part of peripheral extension of central nervous system tissue along the cochlear nerve. Expression of oligodendrocyte marker Oligo2 was observed peripherally to the formation of PCTZ, as determined by DIC microscopy.
Collapse
Affiliation(s)
- Dennis Bojrab
- 1 Department of Otolaryngology-Head and Neck Surgery, Wayne State University, Detroit, Michigan, USA
| | - Baofu Zhang
- 1 Department of Otolaryngology-Head and Neck Surgery, Wayne State University, Detroit, Michigan, USA
| | - Hui Jiang
- 1 Department of Otolaryngology-Head and Neck Surgery, Wayne State University, Detroit, Michigan, USA.,2 Department of Otolaryngology-Head and Neck Surgery, Fudan University Jinshan Hospital, Shanghai, China
| | - Lei Zhang
- 1 Department of Otolaryngology-Head and Neck Surgery, Wayne State University, Detroit, Michigan, USA
| | - David S Cohen
- 1 Department of Otolaryngology-Head and Neck Surgery, Wayne State University, Detroit, Michigan, USA
| | - Xuemei Luo
- 1 Department of Otolaryngology-Head and Neck Surgery, Wayne State University, Detroit, Michigan, USA.,3 Department of Otolaryngology-Head and Neck Surgery, Fudan University Zhongshan Hospital, Shanghai, China
| | - Zhengqing Hu
- 1 Department of Otolaryngology-Head and Neck Surgery, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
37
|
Lee MY, Hackelberg S, Green KL, Lunghamer KG, Kurioka T, Loomis BR, Swiderski DL, Duncan RK, Raphael Y. Survival of human embryonic stem cells implanted in the guinea pig auditory epithelium. Sci Rep 2017; 7:46058. [PMID: 28387239 PMCID: PMC5384248 DOI: 10.1038/srep46058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/10/2017] [Indexed: 01/05/2023] Open
Abstract
Hair cells in the mature cochlea cannot spontaneously regenerate. One potential approach for restoring hair cells is stem cell therapy. However, when cells are transplanted into scala media (SM) of the cochlea, they promptly die due to the high potassium concentration. We previously described a method for conditioning the SM to make it more hospitable to implanted cells and showed that HeLa cells could survive for up to a week using this method. Here, we evaluated the survival of human embryonic stem cells (hESC) constitutively expressing GFP (H9 Cre-LoxP) in deaf guinea pig cochleae that were pre-conditioned to reduce potassium levels. GFP-positive cells could be detected in the cochlea for at least 7 days after the injection. The cells appeared spherical or irregularly shaped, and some were aggregated. Flushing SM with sodium caprate prior to transplantation resulted in a lower proportion of stem cells expressing the pluripotency marker Oct3/4 and increased cell survival. The data demonstrate that conditioning procedures aimed at transiently reducing the concentration of potassium in the SM facilitate survival of hESCs for at least one week. During this time window, additional procedures can be applied to initiate the differentiation of the implanted hESCs into new hair cells.
Collapse
Affiliation(s)
- Min Young Lee
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA.,Department of Otorhinolaryngology and Head &Neck Surgery, Dankook University Hospital, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Korea
| | - Sandra Hackelberg
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Kari L Green
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Kelly G Lunghamer
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Takaomi Kurioka
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Benjamin R Loomis
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - R Keith Duncan
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| |
Collapse
|
38
|
Wise AK, Tan J, Wang Y, Caruso F, Shepherd RK. Improved Auditory Nerve Survival with Nanoengineered Supraparticles for Neurotrophin Delivery into the Deafened Cochlea. PLoS One 2016; 11:e0164867. [PMID: 27788219 PMCID: PMC5082918 DOI: 10.1371/journal.pone.0164867] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 10/03/2016] [Indexed: 11/23/2022] Open
Abstract
Cochlear implants electrically stimulate spiral ganglion neurons (SGNs) in order to provide speech cues to severe-profoundly deaf patients. In normal hearing cochleae the SGNs depend on endogenous neurotrophins secreted by sensory cells in the organ of Corti for survival. SGNs gradually degenerate following deafness and consequently there is considerable interest in developing clinically relevant strategies to provide exogenous neurotrophins to preserve SGN survival. The present study investigated the safety and efficacy of a drug delivery system for the cochlea using nanoengineered silica supraparticles. In the present study we delivered Brain-derived neurotrophic factor (BDNF) over a period of four weeks and evaluated SGN survival as a measure of efficacy. Supraparticles were bilaterally implanted into the basal turn of cochleae in profoundly deafened guinea pigs. One ear received BDNF-loaded supraparticles and the other ear control (unloaded) supraparticles. After one month of treatment the cochleae were examined histologically. There was significantly greater survival of SGNs in cochleae that received BDNF supraparticles compared to the contralateral control cochleae (repeated measures ANOVA, p = 0.009). SGN survival was observed over a wide extent of the cochlea. The supraparticles were well tolerated within the cochlea with a tissue response that was localised to the site of implantation in the cochlear base. Although mild, the tissue response was significantly greater in cochleae treated with BDNF supraparticles compared to the controls (repeated measures ANOVA, p = 0.003). These data support the clinical potential of this technology particularly as the supraparticles can be loaded with a variety of therapeutic drugs.
Collapse
Affiliation(s)
- Andrew K. Wise
- The Bionics Institute, 384–388 Albert Street, East Melbourne, Melbourne, Australia
- The Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Justin Tan
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia
| | - Yajun Wang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, the University of Melbourne, Melbourne, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, the University of Melbourne, Melbourne, Australia
| | - Robert K. Shepherd
- The Bionics Institute, 384–388 Albert Street, East Melbourne, Melbourne, Australia
- The Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
39
|
Effects of brain-derived neurotrophic factor (BDNF) on the cochlear nucleus in cats deafened as neonates. Hear Res 2016; 342:134-143. [PMID: 27773647 DOI: 10.1016/j.heares.2016.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/23/2016] [Accepted: 10/15/2016] [Indexed: 01/11/2023]
Abstract
Many previous studies have shown significant neurotrophic effects of intracochlear delivery of BDNF in preventing degeneration of cochlear spiral ganglion (SG) neurons after deafness in rodents and our laboratory has shown similar results in developing cats deafened prior to hearing onset. This study examined the morphology of the cochlear nucleus (CN) in a group of neonatally deafened cats from a previous study in which infusion of BDNF elicited a significant improvement in survival of the SG neurons. Five cats were deafened by systemic injections of neomycin sulfate (60 mg/kg, SQ, SID) starting one day after birth, and continuing for 16-18 days until auditory brainstem response (ABR) testing demonstrated profound bilateral hearing loss. The animals were implanted unilaterally at about 1 month of age using custom-designed electrodes with a drug-delivery cannula connected to an osmotic pump. BDNF (94 μg/ml; 0.25 μl/hr) was delivered for 10 weeks. The animals were euthanized and studied at 14-23 weeks of age. Consistent with the neurotrophic effects of BDNF on SG survival, the total CN volume in these animals was significantly larger on the BDNF-treated side than on the contralateral side. However, total CN volume, both ipsi- and contralateral to the implants in these deafened juvenile animals, was markedly smaller than the CN in normal adult animals, reflecting the severe effects of deafness on the central auditory system during development. Data from the individual major CN subdivisions (DCN, Dorsal Cochlear Nucleus; PVCN, Posteroventral Cochlear Nucleus; AVCN, Anteroventral Cochlear Nucleus) also were analyzed. A significant difference was observed between the BDNF-treated and control sides only in the AVCN. Measurements of the cross-sectional areas of spherical cells showed that cells were significantly larger in the AVCN ipsilateral to the implant than on the contralateral side. Further, the numerical density of spherical cells was significantly lower in the AVCN ipsilateral to the implant than on the contralateral side, consistent with the larger AVCN volume observed with BDNF treatment. Together, findings indicate significant neurotrophic effects of intracochlear BDNF infusion on the developing CN.
Collapse
|
40
|
Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16052. [PMID: 27525291 PMCID: PMC4972090 DOI: 10.1038/mtm.2016.52] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 06/11/2016] [Indexed: 01/21/2023]
Abstract
Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing.
Collapse
|
41
|
Schwieger J, Esser KH, Lenarz T, Scheper V. Establishment of a long-term spiral ganglion neuron culture with reduced glial cell number: Effects of AraC on cell composition and neurons. J Neurosci Methods 2016; 268:106-16. [DOI: 10.1016/j.jneumeth.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/13/2023]
|
42
|
Kurioka T, Lee MY, Heeringa AN, Beyer LA, Swiderski DL, Kanicki AC, Kabara LL, Dolan DF, Shore SE, Raphael Y. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus. Neuroscience 2016; 332:242-57. [PMID: 27403879 DOI: 10.1016/j.neuroscience.2016.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023]
Abstract
In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Otorhinolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Min Young Lee
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amarins N Heeringa
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ariane C Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa L Kabara
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - David F Dolan
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Jin Y, Lyu AR, Park SJ, Xu J, Cui J, Sohn KC, Hur GM, Jin Y, Park YH. Early Postnatal NT-3 Gene Delivery Enhances Hearing Acquisition in the Developmental Period. Laryngoscope 2016; 126:E379-E385. [DOI: 10.1002/lary.26130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Yongde Jin
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Ah-Ra Lyu
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
- Department of Medical Science; Chungnam National University; Daejeon Republic of Korea
| | - Sung-Jae Park
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Jun Xu
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Jie Cui
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Kyung-Cheol Sohn
- Department of Dermatology , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Yulian Jin
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
- Brain Research Institute , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| |
Collapse
|
44
|
Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons. Neurosci Lett 2016; 624:92-9. [DOI: 10.1016/j.neulet.2016.04.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 11/23/2022]
|
45
|
Genetic Effects on Sensorineural Hearing Loss and Evidence-based Treatment for Sensorineural Hearing Loss. ACTA ACUST UNITED AC 2016; 30:179-88. [PMID: 26564418 DOI: 10.1016/s1001-9294(15)30044-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this article, the mechanism of inheritance behind inherited hearing loss and genetic susceptibility in noise-induced hearing loss are reviewed. Conventional treatments for sensorineural hearing loss (SNHL), i.e. hearing aid and cochlear implant, are effective for some cases, but not without limitations. For example, they provide little benefit for patients of profound SNHL or neural hearing loss, especially when the hearing loss is in poor dynamic range and with low frequency resolution. We emphasize the most recent evidence-based treatment in this field, which includes gene therapy and allotransplantation of stem cells. Their promising results have shown that they might be options of treatment for profound SNHL and neural hearing loss. Although some treatments are still at the experimental stage, it is helpful to be aware of the novel therapies and endeavour to explore the feasibility of their clinical application.
Collapse
|
46
|
Pyykkö I, Zou J, Schrott-Fischer A, Glueckert R, Kinnunen P. An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. Methods Mol Biol 2016; 1427:363-415. [PMID: 27259938 DOI: 10.1007/978-1-4939-3615-1_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles offer new possibilities for inner ear treatment as they can carry a variety of drugs, protein, and nucleic acids to inner ear. Nanoparticles are equipped with several functions such as targetability, immuno-transparency, biochemical stability, and ability to be visualized in vivo and in vitro. A group of novel peptides can be attached to the surface of nanoparticles that will enhance the cell entry, endosomal escape, and nuclear targeting. Eight different types of nanoparticles with different payload carrying strategies are available now. The transtympanic delivery of nanoparticles indicates that, depending on the type of nanoparticle, different migration pathways into the inner ear can be employed, and that optimal carriers can be designed according to the intended cargo. The use of nanoparticles as drug/gene carriers is especially attractive in conjunction with cochlear implantation or even as an inclusion in the implant as a drug/gene reservoir.
Collapse
Affiliation(s)
- Ilmari Pyykkö
- Department of Otolaryngology, University of Tampere and University Hospital of Tampere, Tampere, 33014, Finland. .,Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, Tampere, 33520, Finland.
| | - Jing Zou
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, 02150, Espoo, Finland
| | - Annelies Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Paavo Kinnunen
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, Finland
| |
Collapse
|
47
|
Hahnewald S, Tscherter A, Marconi E, Streit J, Widmer HR, Garnham C, Benav H, Mueller M, Löwenheim H, Roccio M, Senn P. Response profiles of murine spiral ganglion neurons on multi-electrode arrays. J Neural Eng 2015; 13:016011. [PMID: 26656212 DOI: 10.1088/1741-2560/13/1/016011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. SIGNIFICANCE This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.
Collapse
Affiliation(s)
- Stefan Hahnewald
- Inner Ear Research Laboratory, University Departments of Clinical Research and Otorhinolaryngology, Head & Neck Surgery, Inselspital, University of Bern, Switzerland. Regenerative Neuroscience Cluster, Department of Clinical Research, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Novel High Content Screen Detects Compounds That Promote Neurite Regeneration from Cochlear Spiral Ganglion Neurons. Sci Rep 2015; 5:15960. [PMID: 26521685 PMCID: PMC4629150 DOI: 10.1038/srep15960] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
Abstract
The bipolar spiral ganglion neurons (SGN) carry sound information from cochlear hair cells to the brain. After noise, antibiotic or toxic insult to the cochlea, damage to SGN and/or hair cells causes hearing impairment. Damage ranges from fiber and synapse degeneration to dysfunction and loss of cells. New interventions to regenerate peripheral nerve fibers could help reestablish transfer of auditory information from surviving or regenerated hair cells or improve results from cochlear implants, but the biochemical mechanisms to target are largely unknown. Presently, no drugs exist that are FDA approved to stimulate the regeneration of SGN nerve fibers. We designed an original phenotypic assay to screen 440 compounds of the NIH Clinical Collection directly on dissociated mouse spiral ganglia. The assay detected one compound, cerivastatin, that increased the length of regenerating neurites. The effect, mimicked by other statins at different optimal concentrations, was blocked by geranylgeraniol. These results demonstrate the utility of screening small compound libraries on mixed cultures of dissociated primary ganglia. The success of this screen narrows down a moderately sized library to a single compound which can be elevated to in-depth in vivo studies, and highlights a potential new molecular pathway for targeting of hearing loss drugs.
Collapse
|
49
|
Abstract
Cochlear implantation and cochlear implants (CIs) have a long history filled with innovations that have resulted in the high-performing device's currently available. Several promising technologies have been reviewed in this article, which hold the promise to drive performance even higher. Remote CI programming, totally implanted devices, improved neural health and survival through targeted drug therapy and delivery, intraneural electrode placement, electroacoustical stimulation and hybrid CIs, and methods to enhance the neural-prosthesis interface are evolving areas of innovation reviewed in this article.
Collapse
Affiliation(s)
- Joseph P Roche
- Department of Otolaryngology - Head and Neck Surgery, The University of Iowa Carver College of Medicine, 21151 Pomerantz Family Pavilion, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA
| | - Marlan R Hansen
- Department of Otolaryngology - Head and Neck Surgery, The University of Iowa Carver College of Medicine, 21151 Pomerantz Family Pavilion, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA; Department of Neurosurgery, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA.
| |
Collapse
|
50
|
Gillespie LN, Richardson RT, Nayagam BA, Wise AK. Treating hearing disorders with cell and gene therapy. J Neural Eng 2015; 11:065001. [PMID: 25420002 DOI: 10.1088/1741-2560/11/6/065001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.
Collapse
|