1
|
Yang Q, Zhang H, Jin Z, Zhang B, Wang Y. Effects of Valproic Acid Therapy on Rats with Spinal Cord Injury: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 182:12-28. [PMID: 37923014 DOI: 10.1016/j.wneu.2023.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To systematically evaluate the efficacy of valproic acid (VPA) in rats with spinal cord injury (SCI) to reduce the risk of clinical conversion and provide a valuable reference for future animal and clinical studies. METHODS We searched scientific databases, including PubMed, Ovid-Embase, Web of Science, and Scopus databases. The relevant literature was searched from the establishment date of the database to June 28, 2023. The search results were screened, data were extracted, and the quality of the literature was evaluated independently by 2 reviewers. RESULTS Among 656 nonduplicated references, 14 articles were included for meta-analysis. The summary results showed that the overall Basso, Beattie and Bresnahan scores of the VPA intervention group were significantly higher than those in the control group at 1-6 weeks after VPA intervention. Subgroup analysis showed that the injury model, administration dose, rat strain, country of study, or follow-up duration had no significant effect on the efficacy of VPA on rats with SCI. In addition, mesh analysis showed that high doses of the VPA group had a better effect on SCI rats, compared with the low dose group and the medium dose group. CONCLUSIONS To date, this is the first systematic evaluation of the potential effects of VPA on motor recovery in rats with SCI. We concluded that VPA can promote motor recovery in rats with SCI, and higher doses of VPA seem to be more effective in rats with SCI. However, the limited quality and sample of included studies reduced the application of this meta-analysis. In the future, more high-quality, direct comparative studies are needed to explore this issue in depth.
Collapse
Affiliation(s)
- Qinglin Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Zhuanmei Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongping Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China; Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Cheng Y, Song H, Ming GL, Weng YL. Epigenetic and epitranscriptomic regulation of axon regeneration. Mol Psychiatry 2023; 28:1440-1450. [PMID: 36922674 PMCID: PMC10650481 DOI: 10.1038/s41380-023-02028-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.
Collapse
Affiliation(s)
- Yating Cheng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, 77030, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yi-Lan Weng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, 77030, USA.
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022; 13:20417314221083414. [PMID: 35340424 PMCID: PMC8949739 DOI: 10.1177/20417314221083414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction in the olfactory system of a person can have adverse effects on their health and quality of life. It can even increase mortality among individuals. Olfactory dysfunction is related to many factors, including post-viral upper respiratory infection, head trauma, and neurodegenerative disorders. Although some clinical therapies such as steroids and olfactory training are already available, their effectiveness is limited and controversial. Recent research in the field of therapeutic nanoparticles and stem cells has shown the regeneration of dysfunctional olfactory systems. Thus, we are motivated to highlight these regenerative approaches. For this, we first introduce the anatomical characteristics of the olfactory pathway, then detail various pathological factors related to olfactory dysfunctions and current treatments, and then finally discuss the recent regenerative endeavors, with particular focus on nanoparticle-based drug delivery systems and stem cells. This review offers insights into the development of future therapeutic approaches to restore and regenerate dysfunctional olfactory systems.
Collapse
Affiliation(s)
- Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
4
|
HDAC8 Inhibition Reduces Lesional Iba-1+ Cell Infiltration after Spinal Cord Injury without Effects on Functional Recovery. Int J Mol Sci 2020; 21:ijms21124539. [PMID: 32630606 PMCID: PMC7352158 DOI: 10.3390/ijms21124539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 12/30/2022] Open
Abstract
Pan-histone deacetylase (HDAC) inhibition with valproic acid (VPA) has beneficial effects after spinal cord injury (SCI), although with side effects. We focused on specific HDAC8 inhibition, because it is known to reduce anti-inflammatory mediators produced by macrophages (Mφ). We hypothesized that HDAC8 inhibition improves functional recovery after SCI by reducing pro-inflammatory classically activated Mφ. Specific HDAC8 inhibition with PCI-34051 reduced the numbers of perilesional Mφ as measured by histological analyses, but did not improve functional recovery (Basso Mouse Scale). We could not reproduce the published improvement of functional recovery described in contusion SCI models using VPA in our T-cut hemisection SCI model. The presence of spared fibers might be the underlying reason for the conflicting data in different SCI models.
Collapse
|
5
|
Baharvand Z, Nabiuni M, Tahmaseb M, Amini E, Pandamooz S. Investigating the synergic effects of valproic acid and crocin on BDNF and GDNF expression in epidermal neural crest stem cells. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Zhang BY, Chang PY, Zhu QS, Zhu YH. Decoding epigenetic codes: new frontiers in exploring recovery from spinal cord injury. Neural Regen Res 2020; 15:1613-1622. [PMID: 32209760 PMCID: PMC7437595 DOI: 10.4103/1673-5374.276323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury that results in severe neurological disability is often incurable. The poor clinical outcome of spinal cord injury is mainly caused by the failure to reconstruct the injured neural circuits. Several intrinsic and extrinsic determinants contribute to this inability to reconnect. Epigenetic regulation acts as the driving force for multiple pathological and physiological processes in the central nervous system by modulating the expression of certain critical genes. Recent studies have demonstrated that post-SCI alteration of epigenetic landmarks is strongly associated with axon regeneration, glial activation and neurogenesis. These findings not only establish a theoretical foundation for further exploration of spinal cord injury, but also provide new avenues for the clinical treatment of spinal cord injury. This review focuses on the epigenetic regulation in axon regeneration and secondary spinal cord injury. Together, these discoveries are a selection of epigenetic-based prognosis biomarkers and attractive therapeutic targets in the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Bo-Yin Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Peng-Yu Chang
- Department of Radiotherapy, The First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qing-San Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu-Hang Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | -
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Abstract
Permanent disabilities following CNS injuries result from the failure of injured axons to regenerate and rebuild functional connections with their original targets. By contrast, injury to peripheral nerves is followed by robust regeneration, which can lead to recovery of sensory and motor functions. This regenerative response requires the induction of widespread transcriptional and epigenetic changes in injured neurons. Considerable progress has been made in recent years in understanding how peripheral axon injury elicits these widespread changes through the coordinated actions of transcription factors, epigenetic modifiers and, to a lesser extent, microRNAs. Although many questions remain about the interplay between these mechanisms, these new findings provide important insights into the pivotal role of coordinated gene expression and chromatin remodelling in the neuronal response to injury.
Collapse
Affiliation(s)
- Marcus Mahar
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Valeria Cavalli
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
8
|
Lawlor L, Yang XB. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 2019; 11:20. [PMID: 31201303 PMCID: PMC6572769 DOI: 10.1038/s41368-019-0053-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
There are large knowledge gaps regarding how to control stem cells growth and differentiation. The limitations of currently available technologies, such as growth factors and/or gene therapies has led to the search of alternatives. We explore here how a cell's epigenome influences determination of cell type, and potential applications in tissue engineering. A prevalent epigenetic modification is the acetylation of DNA core histone proteins. Acetylation levels heavily influence gene transcription. Histone deacetylase (HDAC) enzymes can remove these acetyl groups, leading to the formation of a condensed and more transcriptionally silenced chromatin. Histone deacetylase inhibitors (HDACis) can inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression. There is strong evidence to suggest that HDACis can be utilised in stem cell therapies and tissue engineering, potentially providing novel tools to control stem cell fate. This review introduces the structure/function of HDAC enzymes and their links to different tissue types (specifically bone, cardiac, neural tissues), including the history, current status and future perspectives of using HDACis for stem cell research and tissue engineering, with particular attention paid to how different HDAC isoforms may be integral to this field.
Collapse
Affiliation(s)
- Liam Lawlor
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Xuebin B Yang
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Pandamooz S, Salehi MS, Zibaii MI, Safari A, Nabiuni M, Ahmadiani A, Dargahi L. Modeling traumatic injury in organotypic spinal cord slice culture obtained from adult rat. Tissue Cell 2019; 56:90-97. [DOI: 10.1016/j.tice.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/04/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
|
10
|
Lu G, Zhang M, Wang J, Zhang K, Wu S, Zhao X. Epigenetic regulation of myelination in health and disease. Eur J Neurosci 2019; 49:1371-1387. [DOI: 10.1111/ejn.14337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Guozhen Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Jian Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Kaixiang Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Xianghui Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| |
Collapse
|
11
|
Palmisano I, Di Giovanni S. Advances and Limitations of Current Epigenetic Studies Investigating Mammalian Axonal Regeneration. Neurotherapeutics 2018; 15:529-540. [PMID: 29948919 PMCID: PMC6095777 DOI: 10.1007/s13311-018-0636-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Axonal regeneration relies on the expression of regenerative associated genes within a coordinated transcriptional programme, which is finely tuned as a result of the activation of several regenerative signalling pathways. In mammals, this chain of events occurs in neurons following peripheral axonal injury, however it fails upon axonal injury in the central nervous system, such as in the spinal cord and the brain. Accumulating evidence has been suggesting that epigenetic control is a key factor to initiate and sustain the regenerative transcriptional response and that it might contribute to regenerative success versus failure. This review will discuss experimental evidence so far showing a role for epigenetic regulation in models of peripheral and central nervous system axonal injury. It will also propose future directions to fill key knowledge gaps and to test whether epigenetic control might indeed discriminate between regenerative success and failure.
Collapse
Affiliation(s)
- Ilaria Palmisano
- Laboratory for Neuroregeneration, Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
| | - Simone Di Giovanni
- Laboratory for Neuroregeneration, Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
12
|
Pandamooz S, Salehi MS, Zibaii MI, Ahmadiani A, Nabiuni M, Dargahi L. Epidermal neural crest stem cell-derived glia enhance neurotrophic elements in an ex vivo model of spinal cord injury. J Cell Biochem 2018; 119:3486-3496. [PMID: 29143997 DOI: 10.1002/jcb.26520] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023]
Abstract
Growing evidence that cell-based therapies can improve recovery outcome in spinal cord injury (SCI) models substantiates their application for treatment of human with SCI. To address the effectiveness of these stem cells, potential candidates should be evaluated in proper SCI platform that allows direct real-time monitoring. In this study, the role of epidermal neural crest stem cells (EPI-NCSCs) was elucidated in an ex vivo model of SCI, and valproic acid (VPA) was administered to ameliorate the inhospitable context of injury for grafted EPI-NCSCs. Here the contusion was induced in organotypic spinal cord slice culture at day seven in vitro using a weight drop device and one hour post injury the GFP- expressing EPI-NCSCs were grafted followed by VPA administration. The evaluation of treated slices seven days after injury revealed that grafted stem cells survived on the injured slices and expressed GFAP, whereas they did not express any detectable levels of the neural progenitor marker doublecortin (DCX), which was expressed prior to transplantation. Immunoblotting data demonstrated that the expression of GFAP, BDNF, neurotrophin-3 (NT3), and Bcl2 increased significantly in stem cell treated slices. This study illustrated that the fate of transplanted stem cells has been directed to the glial lineage in the ex vivo context of injury and EPI-NCSCs may ameliorate the SCI condition through releasing neurotrophic factors directly and/or via inducing resident spinal cord cells.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad S Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad I Zibaii
- Laser and Plasma Research institute, Shahid Beheshti University, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Abstract
The olfactory system is one of a few areas in the nervous system which is capable of regeneration throughout the life. Olfactory sensory neurons reside in the nasal cavity are continuously replenished with new neurons arising from stem cells. Some factors such as aging, neurodegenerative diseases, head trauma, brain tumor extraction and infection cause olfactory dysfunction which significantly influences physical wellbeing, quality of life, mental health, nutritional status, memory processes, identifying danger and is associated with increased mortality. Therefore, finding a treatment to improve olfactory dysfunction is needed. Recent research efforts in the field have shown some very promising new approaches to treat olfactory dysfunction. This review explores the current studies that have addressed therapeutic approaches to improve olfactory neuron regeneration based on cell transplantation therapy, modulation of physiological olfactory dysfunction and drug treatments.
Collapse
Affiliation(s)
- Kate Beecher
- School of Biomedical Science, Queensland University of Technology; Institute of Health and Biomedical Innovation, Queensland University of Technology; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery; Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Science, Queensland University of Technology; Institute of Health and Biomedical Innovation, Queensland University of Technology; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Kong QJ, Wang Y, Liu Y, Sun JC, Xu XM, Sun XF, Shi JG. Neuroprotective Effects of Valproic Acid in a Rat Model of Cauda Equina Injury. World Neurosurg 2017; 108:128-136. [PMID: 28867325 DOI: 10.1016/j.wneu.2017.08.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Histone deacetylase inhibitors, including valproic acid (VPA), are promising therapeutic interventions in neurological disorders and play an important role in synaptic activity and neuronal function. METHODS A total of 30 rats were randomly allocated to 3 groups: sham, control, and VPA. The rats in the VPA and control groups received laminectomy at the L4 level of the vertebrae and silicone gel implantation into the epidural spaces L5 and L6. Rats in the sham group only received laminectomy at the L4 level of vertebrae without any implantation. VPA (300 mg/kg in saline) was administered 2 hours before the surgery. After the surgery, the VPA group received further VPA injections at 300 mg/kg twice a day for 1 week. The same volume of saline was injected in the control group. Neurobehavioral tests using the Basso, Beattie, Bresnahan scale and the oblique board test were performed for 1 week starting at 2 hours before surgery up to day 7 after surgery. At day 7 after surgery, tissues from the compressed cauda equina (L5-L6) were subjected to hematoxylin and eosin, luxol fast blue, or immunofluorescence staining, whereas the terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end label assay staining was performed on the tissue from the dorsal root ganglions and the lumbar segment of the spinal cord proximal to the compressed cauda equina (L5-L6). RESULTS The behavioral results suggested a significant improvement in the lower limb motor function in the VPA group compared with controls (P < 0.05). Furthermore, histologic assessment revealed a significant reduction in nerve fibers showing Wallerian degeneration and demyelinating lesions in the VPA group, in addition to an increased myelination compared with the control group (P < 0.05). The terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end label assay staining revealed a significant decrease in the number of apoptotic neurons in the spinal cord anterior horn and dorsal root ganglions in the VPA group compared with controls (P < 0.05). CONCLUSIONS Our data demonstrated that VPA could alleviate cauda equina injury, reduce apoptotic cells, and improve motor recovery, suggesting a neuroprotective effect in acute cauda equina syndrome.
Collapse
Affiliation(s)
- Qing-Jie Kong
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Yuan Wang
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Yang Liu
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Jing-Chuan Sun
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Xi-Ming Xu
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Xiao-Fei Sun
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Jian-Gang Shi
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Tsybko AS, Ilchibaeva TV, Popova NK. Role of glial cell line-derived neurotrophic factor in the pathogenesis and treatment of mood disorders. Rev Neurosci 2017; 28:219-233. [DOI: 10.1515/revneuro-2016-0063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
AbstractGlial cell line-derived neurotrophic factor (GDNF) is widely recognized as a survival factor for dopaminergic neurons, but GDNF has also been shown to promote development, differentiation, and protection of other central nervous system neurons and was thought to play an important role in various neuropsychiatric disorders. Severe mood disorders, such as primarily major depressive disorder and bipolar affective disorder, attract particular attention. These psychopathologies are characterized by structural alterations accompanied by the dysregulation of neuroprotective and neurotrophic signaling mechanisms required for the maturation, growth, and survival of neurons and glia. The main objective of this review is to summarize the recent findings and evaluate the potential role of GDNF in the pathogenesis and treatment of mood disorders. Specifically, it describes (1) the implication of GDNF in the mechanism of depression and in the effect of antidepressant drugs and mood stabilizers and (2) the interrelation between GDNF and brain neurotransmitters, playing a key role in the pathogenesis of depression. This review provides converging lines of evidence that (1) brain GDNF contributes to the mechanism underlying depressive disorders and the effect of antidepressants and mood stabilizers and (2) there is a cross-talk between GDNF and neurotransmitters representing a feedback system: GDNF-neurotransmitters and neurotransmitters-GDNF.
Collapse
Affiliation(s)
- Anton S. Tsybko
- 1Department of Behavioral Neurogenomics, The Federal Research Center the Institute of Cytology and Genetics SB RAS, Lavrentyeva av. 10, Novosibirsk 630090, Russia
| | - Tatiana V. Ilchibaeva
- 2Department of Behavioral Neurogenomics, The Federal Research Center the Institute of Cytology and Genetics SB RAS, Novosibirsk 633090, Russia
| | - Nina K. Popova
- 2Department of Behavioral Neurogenomics, The Federal Research Center the Institute of Cytology and Genetics SB RAS, Novosibirsk 633090, Russia
| |
Collapse
|
16
|
Pandamooz S, Salehi MS, Nabiuni M, Dargahi L. Valproic acid preserves motoneurons following contusion in organotypic spinal cord slice culture. J Spinal Cord Med 2017; 40:100-106. [PMID: 27576744 PMCID: PMC5376140 DOI: 10.1080/10790268.2016.1213518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Spinal cord injury (SCI) is a devastating condition causing neuronal loss. A key challenge in treatment of SCI is how to retain neurons after injury. Valproic acid (VPA) is a drug recently has been appreciated for its neuroprotective and neurotrophic properties in various SCI models. In this study the role of VPA was assessed in organotypic spinal cord slice culture following the contusion. DESIGN The lumbar enlargement of adult rat was cut transversely and slices were cultured. Seven days after culturing, injury was induced by dropping a 0.5 gram weight from 3 cm height on the slice surface. One hour after injury, the VPA was administered at 1, 5 and 10 µM concentrations. Afterward, at day 1 and 3 post injury (DPI: 1 and 3) propidium iodide (PI) and immunohistochemistry staining were performed to evaluate the cell death, NeuN and β-Tubulin expression, respectively. RESULTS The PI staining of slices at DPI: 1 and 3 following treatment with VPA revealed significant decreases in the cell death in all three concentrations comparing to the non-treated group. Also immunostaining showed VPA only at 5 µM concentration considerably rescued ventral horn' MNs from death and protected the neuronal integrity. CONCLUSION The results of this study indicate applying VPA one hour after injury can prevent the death of a majority of cells, importantly MNs and preserve the neuronal integrity. Since the first 24 hours after SCI is a critical period for employing any treatment, VPA can be considered as an option for further evaluation.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to: Sareh Pandamooz Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mohammad Saied Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Lu H, Le WD, Xie YY, Wang XP. Current Therapy of Drugs in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2016; 14:314-21. [PMID: 26786249 PMCID: PMC4876587 DOI: 10.2174/1570159x14666160120152423] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), commonly termed as motor neuron disease (MND) in UK, is a chronically lethal disorder among the neurodegenerative diseases, meanwhile. ALS is basically irreversible and progressive deterioration of upper and lower motor neurons in the motor cortex, brain stem and medulla spinalis. Riluzole, used for the treatment of ALS, was demonstrated to slightly delay the initiation of respiratory dysfunction and extend the median survival of patients by a few months. In this study, the key biochemical defects were discussed, such as: mutant Cu/Zn superoxide dismutase, mitochondrial protectants, and anti-excitotoxic/ anti-oxidative / anti-inflammatory/ anti-apoptotic agents, so the related drug candidates that have been studied in ALS models would possibly be further used in ALS patients.
Collapse
Affiliation(s)
| | | | | | - Xiao-Ping Wang
- Department of Neurology, Shanghai First People's Hospital , Shanghai Jiao-Tong University, China, 200080.
| |
Collapse
|
18
|
Venkatesh I, Simpson MT, Coley DM, Blackmore MG. Epigenetic profiling reveals a developmental decrease in promoter accessibility during cortical maturation in vivo. NEUROEPIGENETICS 2016; 8:19-26. [PMID: 27990351 PMCID: PMC5159751 DOI: 10.1016/j.nepig.2016.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axon regeneration in adult central nervous system (CNS) is limited in part by a developmental decline in the ability of injured neurons to re-express needed regeneration associated genes (RAGs). Adult CNS neurons may lack appropriate pro-regenerative transcription factors, or may display chromatin structure that restricts transcriptional access to RAGs. Here we performed epigenetic profiling around the promoter regions of key RAGs, and found progressive restriction across a time course of cortical maturation. These data identify a potential intrinsic constraint to axon growth in adult CNS neurons. Neurite outgrowth from cultured postnatal cortical neurons, however, proved insensitive to treatments that improve axon growth in other cell types, including combinatorial overexpression of AP1 factors, overexpression of histone acetyltransferases, and pharmacological inhibitors of histone deacetylases. This insensitivity could be due to intermediate chromatin closure at the time of culture, and highlights important differences in cell culture models used to test potential pro-regenerative interventions.
Collapse
Affiliation(s)
| | | | - Denise M. Coley
- Department of Biomedical Sciences, Marquette University, 53201
| | | |
Collapse
|
19
|
Ganai SA, Ramadoss M, Mahadevan V. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr Neuropharmacol 2016; 14:55-71. [PMID: 26487502 PMCID: PMC4787286 DOI: 10.2174/1570159x13666151021111609] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/23/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their
expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed.
Collapse
Affiliation(s)
| | | | - Vijayalakshmi Mahadevan
- School of Chemical & Biotechnology SASTRA University Tirumalaisamudram, Thanjavur - 613 401 India.
| |
Collapse
|
20
|
Transcriptional and Epigenetic Regulation in Injury-Mediated Neuronal Dendritic Plasticity. Neurosci Bull 2016; 33:85-94. [PMID: 27730386 DOI: 10.1007/s12264-016-0071-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/27/2016] [Indexed: 12/26/2022] Open
Abstract
Injury to the nervous system induces localized damage in neural structures and neuronal death through the primary insult, as well as delayed atrophy and impaired plasticity of the delicate dendritic fields necessary for interneuronal communication. Excitotoxicity and other secondary biochemical events contribute to morphological changes in neurons following injury. Evidence suggests that various transcription factors are involved in the dendritic response to injury and potential therapies. Transcription factors play critical roles in the intracellular regulation of neuronal morphological plasticity and dendritic growth and patterning. Mounting evidence supports a crucial role for epigenetic modifications via histone deacetylases, histone acetyltransferases, and DNA methyltransferases that modify gene expression in neuronal injury and repair processes. Gene regulation through epigenetic modification is of great interest in neurotrauma research, and an early picture is beginning to emerge concerning how injury triggers intracellular events that modulate such responses. This review provides an overview of injury-mediated influences on transcriptional regulation through epigenetic modification, the intracellular processes involved in the morphological consequences of such changes, and potential approaches to the therapeutic manipulation of neuronal epigenetics for regulating gene expression to facilitate growth and signaling through dendritic arborization following injury.
Collapse
|
21
|
Weng YL, Joseph J, An R, Song H, Ming GL. Epigenetic regulation of axonal regenerative capacity. Epigenomics 2016; 8:1429-1442. [PMID: 27642866 DOI: 10.2217/epi-2016-0058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The intrinsic growth capacity of neurons in the CNS declines during neuronal maturation, while neurons in the adult PNS are capable of regeneration. Injured mature PNS neurons require activation of an array of regeneration-associated genes to regain axonal growth competence. Accumulating evidence indicates a pivotal role of epigenetic mechanisms in transcriptional reprogramming and regulation of neuronal growth ability upon injury. In this review, we summarize the latest findings implicating epigenetic mechanisms, including histone and DNA modifications, in axon regeneration and discuss differential epigenomic configurations between neurons in the adult mammalian CNS and PNS.
Collapse
Affiliation(s)
- Yi-Lan Weng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica Joseph
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ran An
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Qiu DL, Wang TH. The Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:970-976. [PMID: 27803784 PMCID: PMC5080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration, limit axonal retraction, and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. MATERIALS AND METHODS 18 healthy juvenile rhesuses were divided randomly into six groups, observed during the periods of 24 hr, 7 days, 14 days, 1 month, 2 months, and 3 months after T11 hemisecting. The GDNF localization, changes in the injured region, and the remote associate cortex were detected by immunohistochemical staining. RESULTS Immunohistochemical staining showed that GDNF was located in the cytoplasm and the neurite of the neurons. Following SCI, the number of GDNF positive neurons in the ventral horn and the caudal part near the lesion area were apparently reduced at detected time points (P<0.05). Moreover, the number in the rostral part of the ventral horn in 7 day, 14 day, and 1 month groups were fewer than those in the caudal part. Importantly, in the contralateral cortex motor area, the positive neurons decreased sharply after hemi-SCI, while gradually increased and went back to normal in 3 months after hemi-SCI. CONCLUSION To sum up, GDNF disruption in neurons occurred after SCI especially in cortex motor area. Intrinsic GDNF in the spinal cord, plays an essential role in neuroplasticity. Thereafter extrinsic GDNF supplementing may be a useful strategy to promote recovery after SCI.
Collapse
Affiliation(s)
- De-Lu Qiu
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ting-Hua Wang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China,Corresponding author: Ting-Hua Wang. Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan university, Chengdu, Sichuan, 610041, China. Tel/Fax: +86-2885501036;
| |
Collapse
|
23
|
Histone deacetylase inhibition is cytotoxic to oligodendrocyte precursor cells in vitro and in vivo. Int J Dev Neurosci 2016; 54:53-61. [PMID: 27587342 DOI: 10.1016/j.ijdevneu.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 11/24/2022] Open
Abstract
Histone deacetylase (HDAC) inhibition mediated by small molecule HDAC inhibitors (HDACi) has demonstrated divergent effects including toxicity towards transformed cell lines, neuroprotection in neurological disease models, and inhibition of oligodendrocyte precursor cell (OPC) differentiation to mature oligodendrocytes (OL). However, it remains unknown if transient HDAC inhibition may promote OPC survival. Using mouse cortical OPC primary cultures, we investigated the effects of the FDA approved pan-HDACi suberoylanilide hydroxamic acid (SAHA) on OPC survival. Initial studies showed differences in the HDAC expression pattern of multiple HDAC isoforms in OPCs relative to their terminally differentiated progeny cells, OLs and astrocytes. Treatment of OPCs with SAHA for up to 72h using a maximum concentration either at or lower than those necessary for cytotoxicity in most transformed cell lines resulted in over 67% reduction in viability relative to vehicle-treated OPCs. This was at least partly due to increased apoptosis as SAHA-treated cells displayed activated caspase 3 and were protected by the general caspase inhibitor Q-VD-OPH. Additionally, SAHA treatment of whole mice at postnatal day 5 induced apoptosis of cortical OPCs. These results suggest that SAHA negatively impacts OPC survival and may be detrimental to the myelinating brain and spinal cord. Such toxicity may be relevant in a clinical context as SAHA is currently involved in numerous clinical trials and is in consideration for use in the treatment of psychiatric and neurodegenerative conditions.
Collapse
|
24
|
Podolak-Popinigis J, Ronowicz A, Dmochowska M, Jakubiak A, Sachadyn P. The methylome and transcriptome of fetal skin: implications for scarless healing. Epigenomics 2016; 8:1331-1345. [PMID: 27510554 DOI: 10.2217/epi-2016-0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Fetal skin is known to heal without scarring. In mice, the phenomenon is observed until the 16-17 day of gestation - the day of transition from scarless to normal healing. The study aims to identify key methylome and transcriptome changes following the transition. MATERIALS & METHODS Methylome and transcriptome profiles were analyzed in murine dorsal skin using microarray approach. RESULTS & CONCLUSION The genes associated with inflammatory response and hyaluronate degradation showed increased DNA methylation before the transition, while those involved in embryonic morphogenesis, neuron differentiation and synapse functions did so after. A number of the methylome alterations were retained until adulthood and correlated with gene expression, while the functional associations imply that scarless healing depends on epigenetic regulation.
Collapse
Affiliation(s)
- Justyna Podolak-Popinigis
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Monika Dmochowska
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Jakubiak
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
25
|
Lee JY, Na WH, Choi HY, Lee KH, Ju BG, Yune TY. Jmjd3 mediates blood-spinal cord barrier disruption after spinal cord injury by regulating MMP-3 and MMP-9 expressions. Neurobiol Dis 2016; 95:66-81. [PMID: 27425890 DOI: 10.1016/j.nbd.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022] Open
Abstract
The disruption of the blood-spinal cord barrier (BSCB) by matrix metalloprotease (MMP) activation is a detrimental event that leads to blood cell infiltration, inflammation, and apoptosis, thereby contributing to permanent neurological disability after spinal cord injury (SCI). However, the molecular mechanisms underlying Mmp gene regulation have not been fully elucidated. Here, we demonstrated the critical role of histone H3K27 demethylase Jmjd3 in the regulation of Mmp gene expression and BSCB disruption using in vitro cellular and in vivo animal models. We found that Jmjd3 up-regulation, in cooperation with NF-κB, after SCI is required for Mmp-3 and Mmp-9 gene expressions in injured vascular endothelial cells. In addition, Jmjd3 mRNA depletion inhibited Mmp-3 and Mmp-9 gene expressions and significantly attenuated BSCB permeability and the loss of tight junction proteins. These events further led to improved functional recovery, along with decreased hemorrhage, blood cell infiltration, inflammation, and cell death of neurons and oligodendrocytes after SCI. Thus, our findings suggest that Jmjd3 regulation may serve as a potential therapeutic intervention for preserving BSCB integrity following SCI.
Collapse
Affiliation(s)
- Jee Y Lee
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won H Na
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Hae Y Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwang H Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Bong G Ju
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea.
| | - Tae Y Yune
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
26
|
Chen J, Laramore C, Shifman MI. Differential expression of HDACs and KATs in high and low regeneration capacity neurons during spinal cord regeneration. Exp Neurol 2016; 280:50-9. [DOI: 10.1016/j.expneurol.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/11/2016] [Accepted: 04/03/2016] [Indexed: 12/12/2022]
|
27
|
Leng Y, Wang J, Wang Z, Liao HM, Wei M, Leeds P, Chuang DM. Valproic Acid and Other HDAC Inhibitors Upregulate FGF21 Gene Expression and Promote Process Elongation in Glia by Inhibiting HDAC2 and 3. Int J Neuropsychopharmacol 2016; 19:pyw035. [PMID: 27207921 PMCID: PMC5006201 DOI: 10.1093/ijnp/pyw035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 21, a novel regulator of glucose and lipid metabolism, has robust protective properties in neurons. However, its expression and function in glia are unknown. Valproic acid, a mood stabilizer and anticonvulsant, is a histone deacetylase inhibitor and a dynamic gene regulator. We investigated whether histone deacetylase inhibition by valproic acid and other inhibitors upregulates fibroblast growth factor 21 expression and, if so, sought to identify the histone deacetylase isoform(s) involved and their role in altering glial cell morphology. METHODS C6 glioma or primary cortical glial cultures were treated with histone deacetylase inhibitors, and fibroblast growth factor 21 levels and length of cell processes were subsequently measured. Histone deacetylase 1, 2, or 3 was also knocked down to detect which isoform was involved in regulating fibroblast growth factor 21 mRNA levels. Finally, knockdown and overexpression of fibroblast growth factor 21 were performed to determine whether it played a role in regulating cell process length. RESULTS Treatment of C6 cells or primary glial cultures with valproic acid elevated fibroblast growth factor 21 mRNA levels, extended cell process length, and markedly increased acetylated histone-H3 levels. Other histone deacetylase inhibitors including pan- and class I-specific inhibitors, or selective knockdown of histone deacetylase 2 or 3 isoform produced similar effects. Knockdown or overexpression of fibroblast growth factor 21 significantly decreased or increased C6 cell process length, respectively. CONCLUSIONS In glial cell line and primary glia, using pharmacological inhibition and selective gene silencing of histone deacetylases to boost fibroblast growth factor 21 mRNA levels results in elongation of cell processes. Our study provides a new mechanism via which histone deacetylase 2 and 3 participate in upregulating fibroblast growth factor 21 transcription and extending process outgrowth in glia.
Collapse
Affiliation(s)
- Yan Leng
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD.
| | | | | | | | | | | | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
28
|
Chen J, Shifman MI. The expression of histone deacetylases and the regenerative abilities of spinal-projecting neurons after injury. Neural Regen Res 2016; 11:1577-1578. [PMID: 27904485 PMCID: PMC5116833 DOI: 10.4103/1673-5374.193233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jie Chen
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA
| | - Michael I Shifman
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA; Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
29
|
Pandamooz S, Nabiuni M, Miyan J, Ahmadiani A, Dargahi L. Organotypic Spinal Cord Culture: a Proper Platform for the Functional Screening. Mol Neurobiol 2015; 53:4659-74. [PMID: 26310972 DOI: 10.1007/s12035-015-9403-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Recent improvements in organotypic slice culturing and its accompanying technological innovations have made this biological preparation increasingly useful ex vivo experimental model. Among organotypic slice cultures obtained from various central nervous regions, spinal cord slice culture is an absorbing model that represents several unique advantages over other current in vitro and in vivo models. The culture of developing spinal cord slices, as allows real-time observation of embryonic cells behaviors, is an instrumental platform for developmental investigation. Importantly, due to the ability of ex vivo models to recapitulate different aspects of corresponding in vivo conditions, these models have been subject of various manipulations to derive disease-relevant slice models. Moreover spinal cord slice cultures represent a potential platform for screening of different pharmacological agents and evaluation of cell transplantation and neuroregenerative materials. In this review, we will focus on studies carried out using the ex vivo model of spinal cord slice cultures and main advantages linked to practicality of these slices in both normal and neuropathological diseases and summarize them in different categories based on application.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jaleel Miyan
- Neurobiology Research Group, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases. Brain Res 2015; 1628:273-287. [PMID: 26232572 DOI: 10.1016/j.brainres.2015.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/11/2015] [Accepted: 07/21/2015] [Indexed: 12/30/2022]
Abstract
Modern definitions of epigenetics incorporate models for transient but biologically important changes in gene expression that are unrelated to DNA code but responsive to environmental changes such as injury-induced stress. In this scheme, changes in oxygen levels (hypoxia) and/or metabolic co-factors (iron deficiency or diminished 2-oxoglutarate levels) are transduced into broad genetic programs that return the cell and the organism to a homeostatic set point. Over the past two decades, exciting studies have identified a superfamily of iron-, oxygen-, and 2-oxoglutarate-dependent dioxygenases that sit in the nucleus as modulators of transcription factor stability, co-activator function, histone demethylases, and DNA demethylases. These studies have provided a concrete molecular scheme for how changes in metabolism observed in a host of neurological conditions, including stroke, traumatic brain injury, and Alzheimer's disease, could be transduced into adaptive gene expression to protect the nervous system. We will discuss these enzymes in this short review, focusing primarily on the ten eleven translocation (TET) DNA demethylases, the jumonji (JmJc) histone demethylases, and the oxygen-sensing prolyl hydroxylase domain enzymes (HIF PHDs). This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
|
31
|
Sirianni AC, Jiang J, Zeng J, Mao LL, Zhou S, Sugarbaker P, Zhang X, Li W, Friedlander RM, Wang X. N-acetyl-l
-tryptophan, but not N-acetyl-d
-tryptophan, rescues neuronal cell death in models of amyotrophic lateral sclerosis. J Neurochem 2015; 134:956-68. [DOI: 10.1111/jnc.13190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Ana C. Sirianni
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Jiying Jiang
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
- Department of Anatomy; Weifang Medical University; Weifang Shandong China
| | - Jiang Zeng
- Institute of Analytical Chemistry for Life Science; School of Public Health; Nantong University; Nantong Jiangsu China
| | - Lilly L. Mao
- Aimcan Pharma Research & Technologies; Guelph Canada
| | - Shuanhu Zhou
- Department of Orthopedic Surgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Peter Sugarbaker
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Xinmu Zhang
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Wei Li
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Robert M. Friedlander
- Department of Neurosurgery; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Xin Wang
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
32
|
Chu W, Yuan J, Huang L, Xiang X, Zhu H, Chen F, Chen Y, Lin J, Feng H. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats. Neurochem Res 2015; 40:1472-86. [PMID: 26023063 DOI: 10.1007/s11064-015-1618-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/02/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022]
Abstract
Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.
Collapse
Affiliation(s)
- Weihua Chu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Growth control mechanisms in neuronal regeneration. FEBS Lett 2015; 589:1669-77. [DOI: 10.1016/j.febslet.2015.04.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022]
|
34
|
Chang CZ, Wu SC, Lin CL, Kwan AL. Valproic acid attenuates intercellular adhesion molecule-1 and E-selectin through a chemokine ligand 5 dependent mechanism and subarachnoid hemorrhage induced vasospasm in a rat model. J Inflamm (Lond) 2015; 12:27. [PMID: 25908928 PMCID: PMC4407545 DOI: 10.1186/s12950-015-0074-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/24/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Up-regulation of regulated upon activation, normal T-cell expressed and secreted (RANTES/CCL5) and adhesion molecules is observed in the serum of animals following experimental subarachnoid hemorrhage (SAH). The present study was to examine the effect of valproic acid (VPA) on RANTES and alternation of adhesion molecules in this model. METHODS A rodent SAH model was employed. Animals were randomly assigned into six groups. Basilar artery (BA) was harvested for intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin evaluation (western blotting) and RANTES (rt-PCR). 1 ng CCL5 recombinant protein intrathecal injection was performed in the VPA + SAH groups. (N = 5). RESULTS Convoluted internal elastic lamina, distorted endothelial wall, and smooth muscle micro-necrosis was prominently observed in the SAH groups, which is absent in the VPA treatment and the healthy controls. Treatment with VPA dose-dependently reduced the ICAM-1, E-selectin and RANTES level, compared with the SAH group (p <0.01). The administration of CCL5 significantly increased CD45(+) glia and ICAM-1 level in the VPA treatment groups. CONCLUSION VPA exerts its anti-vasospastic effect through the dual effect of inhibiting RANTES expression and reduced adhesion molecules. Besides, VPA also decreased CD45(+) cells transmigrated to the vascular wall. The administration of CCL5 significantly reversed the inhibitory effect of this compound on CD45(+) monocytes, E-selectin, and ICAM-1 level. This study also lends credence to support this compound could attenuate SAH induced adhesion molecules and neuro-inflammation in a CCL5 dependent mechanism.
Collapse
Affiliation(s)
- Chih-Zen Chang
- />Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- />Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan
- />Department of Surgery, Kaohsiung Municipal Ta Tung Hospital, Kaohsiung, Taiwan
| | - Shu-Chuan Wu
- />Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- />Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- />Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- />Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- />Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan
| |
Collapse
|
35
|
Goding JA, Gilmour AD, Martens PJ, Poole-Warren LA, Green RA. Small bioactive molecules as dual functional co-dopants for conducting polymers. J Mater Chem B 2015; 3:5058-5069. [DOI: 10.1039/c5tb00384a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scanning electron microscope image of surface morphology of conducting polymer PEDOT doped with bioactive molecules.
Collapse
Affiliation(s)
- J. A. Goding
- Graduate School of Biomedical Engineering
- University of New South Wales
- Sydney 2052
- Australia
| | - A. D. Gilmour
- Graduate School of Biomedical Engineering
- University of New South Wales
- Sydney 2052
- Australia
| | - P. J. Martens
- Graduate School of Biomedical Engineering
- University of New South Wales
- Sydney 2052
- Australia
| | - L. A. Poole-Warren
- Graduate School of Biomedical Engineering
- University of New South Wales
- Sydney 2052
- Australia
| | - R. A. Green
- Graduate School of Biomedical Engineering
- University of New South Wales
- Sydney 2052
- Australia
| |
Collapse
|
36
|
In vitro characteristics of Valproic acid and all-trans-retinoic acid and their combined use in promoting neuronal differentiation while suppressing astrocytic differentiation in neural stem cells. Brain Res 2015; 1596:31-47. [DOI: 10.1016/j.brainres.2014.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/18/2014] [Accepted: 11/13/2014] [Indexed: 01/19/2023]
|
37
|
Zhu Y, Fotinos A, Mao LL, Atassi N, Zhou EW, Ahmad S, Guan Y, Berry JD, Cudkowicz ME, Wang X. Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today 2015; 20:65-75. [DOI: 10.1016/j.drudis.2014.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/02/2014] [Accepted: 08/31/2014] [Indexed: 12/14/2022]
|
38
|
Chu T, Zhou H, Lu L, Kong X, Wang T, Pan B, Feng S. Valproic acid-mediated neuroprotection and neurogenesis after spinal cord injury: from mechanism to clinical potential. Regen Med 2014; 10:193-209. [PMID: 25485637 DOI: 10.2217/rme.14.86] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) is difficult to treat because of secondary injury. Valproic acid (VPA) is clinically approved for mood stabilization, but also counteracts secondary damage to functionally rescue SCI in animal models by improving neuroprotection and neurogenesis via inhibition of HDAC and GSK-3. However, a comprehensive review summarizing the therapeutic benefits and mechanisms of VPA for SCI and the issues affecting clinical trials is lacking, limiting future research on VPA and impeding its translation into clinical therapy for SCI. This article presents the current status of VPA treatment for SCI, emphasizing interactions between enhanced neuroprotection and neurogenesis. Crucial issues are discussed to optimize its clinical potential as a safe and effective treatment for SCI.
Collapse
Affiliation(s)
- Tianci Chu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Purpurogallin, a natural phenol, attenuates high-mobility group box 1 in subarachnoid hemorrhage induced vasospasm in a rat model. Int J Vasc Med 2014; 2014:254270. [PMID: 25485154 PMCID: PMC4251792 DOI: 10.1155/2014/254270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 01/17/2023] Open
Abstract
High-mobility group box 1 (HMGB1) was shown to be an important extracellular mediator involved in vascular inflammation of animals following subarachnoid hemorrhage (SAH). This study is of interest to examine the efficacy of purpurogallin, a natural phenol, on the alternation of cytokines and HMGB1 in a SAH model. A rodent double hemorrhage SAH model was employed. Basilar arteries (BAs) were harvested to examine HMGB1 mRNA and protein expression (Western blot). CSF samples were to examine IL-1β, IL-6, IL-8, and TNF-α (rt-PCR). Deformed endothelial wall, tortuous elastic lamina, and necrotic smooth muscle were observed in the vessels of SAH groups but were absent in the purpurogallin group. IL-1β, IL-6, and TNF-α in the SAH only and SAH plus vehicle groups were significantly elevated (P < 0.01). Purpurgallin dose-dependently reduced HMGB1 protein expression. Likewise, high dose purpurogallin reduced TNF-α and HMGB1 mRNA levels. In conclusion, purpurogallin exerts its neuroinflammation effect through the dual effect of inhibiting IL-6 and TNF-α mRNA expression and reducing HMGB1 protein and mRNA expression. This study supports purpurogallin could attenuate both proinflammatory cytokines and late-onset inflammasome in SAH induced vasospasm.
Collapse
|
40
|
WONG JK, ZOU H. Reshaping the chromatin landscape after spinal cord injury. FRONTIERS IN BIOLOGY 2014; 9:356-366. [PMID: 25554728 PMCID: PMC4280023 DOI: 10.1007/s11515-014-1329-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathophysiology underlying spinal cord injury is complex. Mechanistic understanding of the adaptive responses to injury is critical for targeted therapy aimed at reestablishing lost connections between proximal and distal neurons. After injury, cell-type specific gene transcription programs govern distinct cellular behaviors, and chromatin regulators play a central role in shaping the chromatin landscape to adjust transcriptional profiles in a context-dependent manner. In this review, we summarize recent progress on the pleiotropic roles of chromatin regulators in mediating the diverse adaptive behaviors of neurons and glial cells after spinal cord injury, and wherever possible, discuss the underlying mechanisms and genomic targets. We specifically draw attention to the perspective that takes into consideration the impact of epigenetic modulation on axon growth potential, together with its effect on wound-healing properties of glial cells. Epigenetic modulation of chromatin state represents an emerging therapeutic direction to promote neural repair and axon regeneration after spinal cord injury.
Collapse
Affiliation(s)
- Jamie K. WONG
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongyan ZOU
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
41
|
Croce N, Mathé AA, Gelfo F, Caltagirone C, Bernardini S, Angelucci F. Effects of lithium and valproic acid on BDNF protein and gene expression in an in vitro human neuron-like model of degeneration. J Psychopharmacol 2014; 28:964-72. [PMID: 24699060 DOI: 10.1177/0269881114529379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the common effects of lithium (Li) and valproic acid (VPA) is their ability to protect against excitotoxic insults. Neurodegenerative and neuropsychiatric diseases may be also associated with altered trophic support of brain-derived neurotrophic factor (BDNF), the most widely distributed neurotrophin in the central nervous system. However, despite these evidences, the effect of Li-VPA combination on BDNF after excitoxic insult has been inadequately investigated. We address this issue by exposing a human neuroblastoma cell line (SH-SY5Y) to neurotoxic concentration of L-glutamate and exploring whether the neuroprotective action of Li-VPA on these cells is associated with changes in BDNF protein and mRNA levels. The results showed that pre-incubation of Li-VPA abolished the toxic effect of glutamate on SH-SY5Y cell survival and this neuroprotective effect was associated with increased synthesis and mRNA expression of BDNF after 24 and 48 h of incubation. In conclusion, this study demonstrates that the neuroprotective effects of Li-VPA against glutamate-induced neurotoxicity in SH-SY5Y neuroblastoma cells is associated with increased synthesis and mRNA expression of BDNF. These data further support the idea that these two drugs can be used for prevention and/or treatment of glutamate-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Nicoletta Croce
- IRCCS Santa Lucia Foundation, Rome, Italy Department of Internal Medicine, Tor Vergata University, Rome, Italy
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy Department of Systemic Medicine, Tor Vergata University, Rome, Italy
| | - Carlo Caltagirone
- IRCCS Santa Lucia Foundation, Rome, Italy Department of Systemic Medicine, Tor Vergata University, Rome, Italy
| | - Sergio Bernardini
- Department of Internal Medicine, Tor Vergata University, Rome, Italy
| | | |
Collapse
|
42
|
Jaanson K, Sepp M, Aid-Pavlidis T, Timmusk T. BAC-based cellular model for screening regulators of BDNF gene transcription. BMC Neurosci 2014; 15:75. [PMID: 24943717 PMCID: PMC4071165 DOI: 10.1186/1471-2202-15-75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/13/2014] [Indexed: 01/17/2023] Open
Abstract
Background Brain derived neurotrophic factor (BDNF) belongs to a family of structurally related proteins called neurotrophins that have been shown to regulate survival and growth of neurons in the developing central and peripheral nervous system and also to take part in synaptic plasticity related processes in adulthood. Since BDNF is associated with several nervous system disorders it would be beneficial to have cellular reporter system for studying its expression regulation. Methods Using modified bacterial artificial chromosome (BAC), we generated several transgenic cell lines expressing humanised Renilla luciferase (hRluc)-EGFP fusion reporter gene under the control of rat BDNF gene regulatory sequences (rBDNF-hRluc-EGFP) in HeLa background. To see if the hRluc-EGFP reporter was regulated in response to known regulators of BDNF expression we treated cell lines with substances known to regulate BDNF and also overexpressed transcription factors known to regulate BDNF gene in established cell lines. Results rBDNF-hRluc-EGFP cell lines had high transgene copy numbers when assayed with qPCR and FISH analysis showed that transgene was maintained episomally in all cell lines. Luciferase activity in transgenic cell lines was induced in response to ionomycin-mediated rise of intracellular calcium levels, treatment with HDAC inhibitors and by over-expression of transcription factors known to increase BDNF expression, indicating that transcription of the transgenic reporter is regulated similarly to the endogenous BDNF gene. Conclusions Generated rBDNF-hRluc-EGFP BAC cell lines respond to known modulators of BDNF expression and could be used for screening of compounds/small molecules or transcription factors altering BDNF expression.
Collapse
Affiliation(s)
- Kaur Jaanson
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | | | | | | |
Collapse
|
43
|
Cho Y, Cavalli V. HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol 2014; 27:118-26. [PMID: 24727244 DOI: 10.1016/j.conb.2014.03.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
The development and repair of the nervous system requires the coordinated expression of a large number of specific genes. Epigenetic modifications of histones represent an essential principle by which neurons regulate transcriptional responses and adapt to environmental cues. The post-translational modification of histones by chromatin-modifying enzymes histone acetyltransferases (HATs) and histone deacetylases (HDACs) shapes chromatin to adjust transcriptional profiles during neuronal development. Recent observations also point to a critical role for histone acetylation and deacetylation in the response of neurons to injury. While HDACs are mostly known to attenuate transcription through their deacetylase activity and their interaction with co-repressors, these enzymes are also found in the cytoplasm where they display transcription-independent activities by regulating the function of diverse proteins. Here we discuss recent studies that go beyond the traditional use of HDAC inhibitors and have begun to dissect the roles of individual HDAC isoforms in neuronal development and repair after injury.
Collapse
Affiliation(s)
- Yongcheol Cho
- Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis 63110, MO, USA
| | - Valeria Cavalli
- Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis 63110, MO, USA.
| |
Collapse
|
44
|
Maldonado Bouchard S, Hook MA. Psychological stress as a modulator of functional recovery following spinal cord injury. Front Neurol 2014; 5:44. [PMID: 24782818 PMCID: PMC3988397 DOI: 10.3389/fneur.2014.00044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/23/2014] [Indexed: 12/28/2022] Open
Abstract
There is strong evidence indicating that the social environment triggers changes to the psychological stress response and glucocorticoid receptor function. Considerable literature links the subsequent changes in stress resiliency to physical health. Here, converging evidence for the modulatory role of chronic psychological stress in the recovery process following spinal cord injury (SCI) is presented. Despite the considerable advances in SCI research, we are still unable to identify the causes of variability in patients' recovery following injury. We propose that individuals' past and present life experiences (in the form of stress exposure) may significantly modulate patients' outcome post-SCI. We propose a theoretical model to explain the negative impact of chronic psychological stress on physical and psychological recovery. The stress experienced in life prior to SCI and also as a result of the traumatic injury, could compromise glucocorticoid receptor sensitivity and function, and contribute to high levels of inflammation and apoptosis post-SCI, decreasing the tissue remaining at the injury site and undermining recovery of function. Both stress-induced glucocorticoid resistance and stress-induced epigenetic changes to the glucocorticoid receptor can modulate the nuclear factor-kappa B regulated inflammatory pathways and the Bcl-2 regulated apoptosis pathways. This model not only contributes to the theoretical understanding of the recovery process following injury, but also provides concrete testable hypotheses for future studies.
Collapse
Affiliation(s)
- Sioui Maldonado Bouchard
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Texas A&M Institute for Neuroscience, College of Medicine , College Station, TX , USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Texas A&M Institute for Neuroscience, College of Medicine , College Station, TX , USA
| |
Collapse
|
45
|
Abstract
Axon regeneration is hindered by a decline of intrinsic axon growth capability in mature neurons. Reversing this decline is associated with the induction of a large repertoire of regeneration-associated genes (RAGs), but the underlying regulatory mechanisms of the transcriptional changes are largely unknown. Here, we establish a correlation between diminished axon growth potential and histone 4 (H4) hypoacetylation. When neurons are triggered into a growth state, as in the conditioning lesion paradigm, H4 acetylation is restored, and RAG transcription is initiated. We have identified a set of target genes of Smad1, a proregenerative transcription factor, in conditioned DRG neurons. We also show that, during the epigenetic reprogramming process, histone-modifying enzymes work together with Smad1 to facilitate transcriptional regulation of RAGs. Importantly, targeted pharmacological modulation of the activity of histone-modifying enzymes, such as histone deacetylases, leads to induction of multiple RAGs and promotion of sensory axon regeneration in a mouse model of spinal cord injury. Our findings suggest epigenetic modulation as a potential therapeutic strategy to enhance axon regeneration.
Collapse
|
46
|
Abstract
Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease.
Collapse
Affiliation(s)
- Fernando M Mar
- Nerve Regeneration Group Instituto de Biologia Molecular e Celular - IBMC University of Porto, Porto, Portugal
| | | | | |
Collapse
|
47
|
Chen S, Wu H, Klebe D, Hong Y, Zhang J. Valproic acid: a new candidate of therapeutic application for the acute central nervous system injuries. Neurochem Res 2014; 39:1621-33. [PMID: 24482021 DOI: 10.1007/s11064-014-1241-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/12/2014] [Accepted: 01/15/2014] [Indexed: 12/13/2022]
Abstract
Acute central nervous system (CNS) injuries, including stroke, traumatic brain injury (TBI), and spinal cord injury (SCI), are common causes of human disabilities and deaths, but the pathophysiology of these diseases is not fully elucidated and, thus, effective pharmacotherapies are still lacking. Valproic acid (VPA), an inhibitor of histone deacetylation, is mainly used to treat epilepsy and bipolar disorder with few complications. Recently, the neuroprotective effects of VPA have been demonstrated in several models of acute CNS injuries, such as stroke, TBI, and SCI. VPA protects the brain from injury progression via anti-inflammatory, anti-apoptotic, and neurotrophic effects. In this review, we focus on the emerging neuroprotective properties of VPA and explore the underlying mechanisms. In particular, we discuss several potential related factors in VPA research and present the opportunity to administer VPA as a novel neuropective agent.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | | | | | | | | |
Collapse
|
48
|
Pandya RS, Zhu H, Li W, Bowser R, Friedlander RM, Wang X. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci 2013; 70:4729-45. [PMID: 23864030 PMCID: PMC4172456 DOI: 10.1007/s00018-013-1415-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/06/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient's life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression.
Collapse
Affiliation(s)
- Rachna S. Pandya
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Wei Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Robert Bowser
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Robert M. Friedlander
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
49
|
Koppel I, Timmusk T. Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors. Neuropharmacology 2013; 75:106-15. [PMID: 23916482 DOI: 10.1016/j.neuropharm.2013.07.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/28/2013] [Accepted: 07/14/2013] [Indexed: 12/18/2022]
Abstract
Histone deactylase (HDAC) inhibitors show promise as therapeutics for neurodegenerative and psychiatric diseases. Increased expression of brain-derived neurotrophic factor (BDNF) has been associated with memory-enhancing and neuroprotective properties of these drugs, but the mechanism of BDNF induction is not well understood. Here, we compared the effects of a class I/IIb selective HDAC inhibitor SAHA, a class I selective inhibitor MS-275, a class II selective inhibitor MC1568 and a HDAC6 selective inhibitor tubacin on Bdnf mRNA expression in rat primary neurons. We show that inhibition of class II HDACs resulted in rapid upregulation of Bdnf mRNA levels, whereas class I HDAC inhibition produced a markedly delayed Bdnf induction. In contrast to relatively slow upregulation of Bdnf transcripts, histone acetylation at BDNF promoters I and IV was rapidly induced by SAHA. Bdnf induction by SAHA and MS-275 at 24 h was sensitive to protein synthesis inhibition, suggesting that delayed Bdnf induction by HDAC inhibitors is secondary to changed expression of its regulators. HDAC4 and HDAC5 repressed Bdnf promoter IV activity, supporting the role of class II HDACs in regulation of Bdnf expression. In addition, we show a critical role for the cAMP/Ca2+ response element (CRE) in induction of Bdnf promoter IV by MS-275, MC1568, SAHA and sodium valproate. In contrast, MEF2-binding CaRE1 element was not necessary for promoter IV induction by HDAC inhibition. Finally, we show that similarly to Bdnf, the studied HDAC inhibitors differentially induced expression of neuronal activity-regulated genes c-fos and Arc. Together, our findings implicate class II HDACs in transcriptional regulation of Bdnf and indicate that class II selective HDAC inhibitors may have potential as therapeutics for nervous system disorders.
Collapse
Affiliation(s)
- Indrek Koppel
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
50
|
Wu D, Li Q, Zhu X, Wu G, Cui S. Valproic acid protection against the brachial plexus root avulsion-induced death of motoneurons in rats. Microsurgery 2013; 33:551-9. [PMID: 23843283 DOI: 10.1002/micr.22130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 01/17/2023]
Abstract
In this study, the role of valproic acid (VPA) in protecting motoneuron after brachial plexus root avulsion was investigated in adult rats. Sixty rats were used in this study, and underwent the brachial plexus root avulsion injury, which was created by using a micro-hemostat forceps to pull out brachial plexus root from the intervertebral foramen. The animals were divided into two groups, VPA group administered with VPA dissolved in drinking water (300 mg/kg) daily, and control group had drinking water every day. The spinal cords (C5-T1) were harvested at day 1, 2, 3, 7, 14, and 28 for immunohistochemistry analysis, TUNEL staining, Nissl staining, and electron microscopy, respectively. The results showed that with VPA administration, the survival of motoneurons was promoted and the cell apoptosis was inhibited. The number of c-Jun and Bcl-2 positive motoneurons was increased immediately after avulsion both in control and VPA group, however, the percent of c-Jun positive motoneurons was decreased and the percent of Bcl-2 positive motoneurons was increased by VPA treatment significantly. Our results indicated that motoneurons were protected by VPA against cell death induced by brachial plexus root avulsion through c-Jun inhibition and Bcl-2 induction.
Collapse
Affiliation(s)
- Dianxiu Wu
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Qiang Li
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Guangzhi Wu
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Shusen Cui
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| |
Collapse
|