1
|
Lei J, Tang LL, Jing R, You HJ. Antinociceptive role of the thalamic dopamine D3 receptor in descending modulation of intramuscular formalin-induced muscle nociception in a rat model of Parkinson's disease. Exp Neurol 2024; 379:114846. [PMID: 38879111 DOI: 10.1016/j.expneurol.2024.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024]
Abstract
Pain in Parkinson's disease (PD) has been validated as one of the major non-motor dysfunctions affecting the quality of life and subsequent rehabilitation. In the present study, we investigated the role of the dopamine D3 receptor in the thalamic mediodorsal (MD) and ventromedial (VM) nuclei mediated descending control of nociception and intramuscular (i.m.) 2.5% formalin-induced persistent muscle nociception. Paw withdrawal reflexes were measured in naive rats and rats subjected to PD induced by unilateral microinjection of 6 μg 6-OHDA into the rat striatum. Formalin-induced muscle nociception in phase 1, inter-phase, and phase 2 was significantly greater in PD rats compared to naive and vehicle-treated rats (P < 0.001). PD rats exhibited bilaterally mechanical hyperalgesia and heat hypoalgesia in formalin-induced muscle nociception. Microinjection of SK609, a dopamine D3 receptor agonist, at various doses (2.5-7.5 nmol/0.5 μl) into the thalamic VM nucleus dose-dependently prolonged heat-evoked paw withdrawal latencies in both naive and PD rats. Administration of SK609 to either the MD or VM nuclei had no effect on noxious mechanically evoked paw withdrawal reflexes. Pre-treatment of the thalamic MD nucleus with SK609 significantly attenuated formalin-induced nociception, and reversed mechanical hyperalgesia, but not heat hypoalgesia. Pre-treatment of the thalamic VM nucleus with SK609 inhibited formalin-induced nociception in the late phase of phase 2 (30-75 min) and heat hypoalgesia, but not mechanical hyperalgesia (P < 0.05). It is suggested that the dopamine D3 receptors in the thalamus play an antinociceptive role in the descending modulation of nociception. Activation of D3 receptors within the thalamic MD and VM nuclei attenuates descending facilitation and enhances descending inhibition in rats during PD.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China
| | - Rong Jing
- Department of Rehabilitation Medicine, Affiliated Hospital of Yan'an University, Yan'an 716000, PR China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China.
| |
Collapse
|
2
|
Lei J, Tang LL, You HJ. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment. Neurosci Biobehav Rev 2024; 161:105646. [PMID: 38569983 DOI: 10.1016/j.neubiorev.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
In addition to motor symptoms, non-motor manifestations of Parkinson's disease (PD), i.e. pain, depression, sleep disturbance, and autonomic disorders, have received increasing attention. As one of the non-motor symptoms, pain has a high prevalence and is considered an early pre-motor symptom in the development of PD. In relation to pathological pain and its management in PD, particularly in the early stages, it is hypothesized that the loss of dopaminergic neurons causes a functional deficit in supraspinal structures, leading to an imbalance in endogenous descending modulation. Deficits in dopaminergic-dependent pathways also affect non-dopaminergic neurotransmitter systems that contribute to the pathological processing of nociceptive input, the integration, and modulation of pain in PD. This review examines the onset and progression of pain in PD, with a particular focus on alterations in the central modulation of nociception. The discussion highlights the importance of abnormal endogenous descending facilitation and inhibition in PD pain, which may provide potential clues to a better understanding of the nature of pathological pain and its effective clinical management.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China.
| |
Collapse
|
3
|
Zavodovskiy DO, Bulgakova NV, Sokolowska I, Prylutskyy YI, Ritter U, Gonchar OO, Kostyukov AI, Vlasenko OV, Butowska K, Borowik A, Piosik J, Maznychenko A. Water-soluble pristine C 60 fullerenes attenuate isometric muscle force reduction in a rat acute inflammatory pain model. BMC Musculoskelet Disord 2023; 24:606. [PMID: 37491190 PMCID: PMC10367279 DOI: 10.1186/s12891-023-06719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Being a scavenger of free radicals, C60 fullerenes can influence on the physiological processes in skeletal muscles, however, the effect of such carbon nanoparticles on muscle contractility under acute muscle inflammation remains unclear. Thus, the aim of the study was to reveal the effect of the C60 fullerene aqueous solution (C60FAS) on the muscle contractile properties under acute inflammatory pain. METHODS To induce inflammation a 2.5% formalin solution was injected into the rat triceps surae (TS) muscle. High-frequency electrical stimulation has been used to induce tetanic muscle contraction. A linear motor under servo-control with embedded semi-conductor strain gauge resistors was used to measure the muscle tension. RESULTS In response to formalin administration, the strength of TS muscle contractions in untreated animals was recorded at 23% of control values, whereas the muscle tension in the C60FAS-treated rats reached 48%. Thus, the treated muscle could generate 2-fold more muscle strength than the muscle in untreated rats. CONCLUSIONS The attenuation of muscle contraction force reduction caused by preliminary injection of C60FAS is presumably associated with a decrease in the concentration of free radicals in the inflamed muscle tissue, which leads to a decrease in the intensity of nociceptive information transmission from the inflamed muscle to the CNS and thereby promotes the improvement of the functional state of the skeletal muscle.
Collapse
Affiliation(s)
| | | | - Inna Sokolowska
- Gdansk University of Physical Education and Sport, Kazimierza Gorskiego Str. 1, Gdansk 80- 336, Gdansk, Poland
| | - Yuriy I Prylutskyy
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64, Kyiv, 01601, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Str. 25, 98693, Ilmenau, Germany
| | - Olga O Gonchar
- Bogomoletz Institute of Physiology, Bogomoletz Str. 4, Kyiv, 01024, Ukraine
| | | | - Oleh V Vlasenko
- Laboratory of Experimental Neurophysiology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Kamila Butowska
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, Gdansk, 80-307, Poland
| | - Agnieszka Borowik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, Gdansk, 80-307, Poland
| | - Jacek Piosik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, Gdansk, 80-307, Poland.
| | - Andriy Maznychenko
- Bogomoletz Institute of Physiology, Bogomoletz Str. 4, Kyiv, 01024, Ukraine.
- Gdansk University of Physical Education and Sport, Kazimierza Gorskiego Str. 1, Gdansk 80- 336, Gdansk, Poland.
| |
Collapse
|
4
|
You HJ, Lei J, Pertovaara A. Thalamus: The 'promoter' of endogenous modulation of pain and potential therapeutic target in pathological pain. Neurosci Biobehav Rev 2022; 139:104745. [PMID: 35716873 DOI: 10.1016/j.neubiorev.2022.104745] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
More recently, the thalamic mediodorsal (MD) and ventromedial (VM) nuclei have been revealed to be functioned as 'nociceptive discriminator' in discriminating noxious and innocuous peripheral afferents, and exhibits distinct different descending controls of nociception. Of particularly importance, the function of thalamic nuclei in engaging descending modulation of nociception is 'silent' or inactive during the physiological state as well as in condition exposed to insufficient noxious stimulation. Once initiation by sufficient noxious or innocuous C-afferents associated with temporal and spatial summation, the thalamic MD and VM nuclei exhibit salient, different effects: facilitation and inhibition, on noxious mechanically and heat evoked nociception, respectively. Based on series of experimental evidence, we here summarize a novel hypothesis involving thalamic MD and VM nuclei functioned as 'promoter' in initiating descending facilitation and inhibition of pain with specific spatiotemporal characteristics. We further hypothesize that clinical remedy in targeting thalamic VM nucleus by enhancing its activities in recruiting inhibition alone or decreasing thalamic MD nucleus induced facilitation may provide promising way in effectively control of pathological pain.
Collapse
Affiliation(s)
- Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China.
| | - Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki 00014, Finland
| |
Collapse
|
5
|
Nakamura Y, Fukushige R, Watanabe K, Kishida Y, Hisaoka-Nakashima K, Nakata Y, Morioka N. Continuous infusion of substance P inhibits acute, but not subacute, inflammatory pain induced by complete Freund's adjuvant. Biochem Biophys Res Commun 2020; 533:971-975. [PMID: 33008602 DOI: 10.1016/j.bbrc.2020.09.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Previous studies have reported that continuous infusion with substance P (SP) into rat dorsal striatum ameliorated both mechanical allodynia in both formalin-evoked transient inflammatory pain and neuropathic pain models. However, a role of striatal SP in persistent inflammatory pain has not been demonstrated. The current study examined the effect of continuous infusion of SP into the rat dorsal striatum by reverse microdialysis on persistent inflammatory pain induced by complete Freund's adjuvant (CFA). Intraplantar injection of CFA evoked both mechanical allodynia and paw edema 3 and 7 days post-injection. The continuous infusion of SP ameliorated the CFA-evoked mechanical allodynia, but not paw edema, 3 days after the CFA injection. This antinociceptive effect of SP was partially inhibited by co-infusion with the neurokinin-1 (NK1) receptor antagonist CP96345. Conversely, at 7 days both CFA-evoked mechanical allodynia and paw edema were not affected by SP treatment. To clarify why the effect of SP treatment on CFA-induced pain changed, we evaluated NK1 receptor protein levels at both time points. The NK1 receptor protein level was decreased at 7, but not 3, days post CFA injection. These data suggest that persistent inflammatory pain can downregulate the striatal NK1 receptor. The current study demonstrates that striatal SP-NK1 receptor pathway can exert antinociceptive effect only on the third days of inflammatory pain phase defined as an acute but not the 7 days defined as a subacute.
Collapse
Affiliation(s)
- Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Ryo Fukushige
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kohei Watanabe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuki Kishida
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
6
|
Lei J, Ye G, Pertovaara A, You HJ. Effects of Heating-needle Stimulation in Restoration of Weakened Descending Inhibition of Nociception in a Rat Model of Parkinson's Disease. Neuroscience 2020; 440:249-266. [PMID: 32504795 DOI: 10.1016/j.neuroscience.2020.05.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 01/29/2023]
Abstract
Here we investigated variations of endogenous descending modulation of nociception and therapeutic effects of intramuscular (i.m.) heating-needle stimulation in early stage of Parkinson's disease (PD) induced by unilateral microinjection of 3.5 μl of 2.5 μg/μl 6-hydroxydopamine into the rat striatum. Paw withdrawal reflexes to noxious mechanical and heat stimuli in PD rats with and without exposure to i.m. 5.8% saline induced muscle nociception were evaluated. Experimental PD had no influence on mechanical or heat sensitivity in the baseline condition, whereas descending facilitation was stronger and descending inhibition was weaker in PD rats than vehicle-treated or naive rats during muscle nociception (P < 0.05). Striatal administration of 5 μg of dopamine failed to reverse the PD-associated changes in descending facilitation or inhibition, whereas dopamine in the thalamic mediodorsal (MD) nucleus and ventromedial (VM) nucleus significantly decreased the increase in descending facilitation and reversed the attenuation in descending inhibition, respectively (P < 0.05). I.m. 43 °C of heating-needle stimulation had no effects on the enhanced descending facilitation in PD rats, but it markedly increased descending inhibition and reversed the increase in the number of apomorphine-induced body rotations (P < 0.05), which effects were dose-dependently attenuated by raclopride, a dopamine 2 receptor antagonist, in the thalamic VM nucleus (P < 0.05). The results indicate that the early-stage PD is associated with enhanced descending facilitation and weakened descending inhibition. From clinical perspective, 43 °C heat therapeutic regime promises to selectively enhance descending inhibition that is accompanied by improvement of motor dysfunction in PD.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Department of Physiology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Gang Ye
- Department of Rehabilitation, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China.
| |
Collapse
|
7
|
Lei J, Ye G, Pertovaara A, You HJ. Effects of Intramuscular Heating-needle Stimulation in Controlling Adjuvant-induced Muscle Nociception in Rats: Differential Roles of Thalamic Purinergic P2X3 Receptors. Neuroscience 2020; 433:81-93. [PMID: 32147510 DOI: 10.1016/j.neuroscience.2020.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 12/30/2022]
Abstract
Here we investigated effects of intramuscular (i.m.) heating-needle stimulation on persistent muscle nociception evoked by i.m. injection of different doses (50-200 µl) of complete Freund's adjuvant (CFA) in rats. Paw withdrawal reflexes evoked by noxious mechanical and heat stimulation as well as hind limb swelling were determined prior to and two weeks after the CFA injection. The unilateral injection of CFA induced a dose-related and long-lasting (5-14 d), bilateral secondary mechanical hyperalgesia and heat hypoalgesia associated with long-term limb swelling. A period of 30-45 min 43 °C heating-needle stimulation significantly enhanced the i.m. CFA-induced bilateral heat hypoalgesia and alleviated hind limb swelling. In contrast, 30-45 min 46 °C heating-needle stimulation markedly enhanced both mechanical hyperalgesia and heat hypoalgesia, but failed to influence the CFA-induced hind limb swelling. Microinjection of P2X3 receptor antagonist A-317491 (0.5-4.5 nmol/0.5 µl) into the thalamic ventromedial (VM) nucleus dose-dependently inhibited the 43 °C and 46 °C heating-needle stimulation-induced heat hypoalgesia, whereas the 46 °C heating-needle stimulation-induced mechanical hyperalgesia was significantly prevented by microinjection of A-317491 into the thalamic mediodorsal (MD) nucleus. In contrast, the hind limb swelling was not affected by the microinjection of A-317491 into the thalamic VM or MD nucleus. The present study indicates that in the CFA-induced persistent muscle nociception condition, 43 °C heating-needle stimulation selectively increases descending inhibition, which effect is modulated by the thalamic VM nucleus. In addition to the antinociceptive role of P2X3 receptors in the thalamic VM nucleus, P2X3 receptors within the thalamic MD nucleus participate in the descending facilitation evoked by i.m. 46 °C heating-needle stimulation.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Faculty of Medicine/Physiology, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Gang Ye
- Department of Rehabilitation, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Antti Pertovaara
- Faculty of Medicine/Physiology, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China.
| |
Collapse
|
8
|
Nasirinezhad F, Hosseini M, Karami Z, Janzadeh A, Yousefifard M. Comparative Efficacy of GABAA and GABAB Receptor Agonists in Pain Alleviation in a Spinal Cord Injury Model of Neuropathic Pain. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09826-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Tamaddonfard E, Tamaddonfard S, Cheraghiyan S. Effects of intracerebroventricular injection of vitamin B 12 on formalin-induced muscle pain in rats: Role of cyclooxygenase pathway and opioid receptors. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2018; 9:329-335. [PMID: 30713611 PMCID: PMC6346495 DOI: 10.30466/vrf.2018.33104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 01/14/2023]
Abstract
Vitamin B12 modulates pain at the local and peripheral levels. This study has investigated the effects of intracerebroventricular (ICV) injection of vitamin B12 on themuscle pain. We used diclofenac (cyclooxygenase inhibitor) and naloxone (opioid receptors antagonist) to clarify the possible mechanisms. For ICV injections, a guide cannula was implanted in the left lateral ventricle of the brain. Muscle pain was induced by intramuscular injection of formalin (2.50%; 50 µl) in the right gastrocnemius muscle and the number of paw flinching was recorded at 5-min blocks for 60 min. Locomotor activity was performed using an open-field test. Formalin induced a biphasic pain. Vitamin B12 (1.25, 2.50, 5.00 and 10.00 µg per rat) and diclofenac (12.50 and 25.00 µg per rat) significantly reduced both phases pain intensity. Significant antinociceptive effects were observed after combined treatments of diclofenac (6.25 and 12.50 µg per rat) with vitamin B12 (0.63 and 2.50 µg per rat), respectively. Prior ICV injection of naloxone (10.00 µg per rat) prevented vitamin B12 (10.00 µg per rat) and diclofenac (25.00 µg per rat) induced antinociceptive effects. All the above-mentioned chemicals did not alter locomotor behavior in an open-field test. The present results showed that the cyclooxygenase pathway and opioid receptors may be involved in the central antinociceptive effect of vitamin B12. In addition, opioid receptors might be involved in diclofenac-induced antinociception.
Collapse
Affiliation(s)
- Esmaeal Tamaddonfard
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Sina Tamaddonfard
- DVM Student, Faculty of Veterinary Medicine, Urmia Branch of Islamic Azad University, Urmia, Iran
| | - Siamak Cheraghiyan
- Faculty of Veterinary Medicine, Urmia Branch of Islamic Azad University, Urmia, Iran
| |
Collapse
|
10
|
Ghasemi H, Tamaddonfard E, Soltanalinejad F. Role of thalamic ventral posterolateral nucleus histamine H 2 and opiate receptors in modulation of formalin-induced muscle pain in rats. Pharmacol Rep 2017; 69:1393-1401. [DOI: 10.1016/j.pharep.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/18/2017] [Accepted: 05/05/2017] [Indexed: 02/02/2023]
|
11
|
Lei J, Ye G, Wu JT, Pertovaara A, You HJ. Role of capsaicin- and heat-sensitive afferents in stimulation of acupoint-induced pain and analgesia in humans. Neuroscience 2017; 358:325-335. [PMID: 28684276 DOI: 10.1016/j.neuroscience.2017.06.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
We investigated role of capsaicin-sensitive afferents within and without the areas of Zusanli (ST36)/Shangjuxu (ST37) acupoints along the stomach (ST) meridian in the perception and modulation of pain assessed by visual analog scale of pain and its distribution rated by subjects, pressure pain threshold (PPT), and heat pain threshold (HPT) in humans. Compared with the treatment of non-acupoint area, capsaicin (100µg/50µl) administered into either ST36 or ST37 acupoint caused the strongest pain intensity and the most extensive pain distribution, followed by rapid onset, bilateral, long-lasting secondary mechanical hyperalgesia and slower onset secondary heat hypoalgesia (1day after the capsaicin treatment). Between treatments of different acupoints, capsaicin administrated into the ST36 acupoint exhibited the stronger pain intensity and more widespread pain distribution compared with the treatment of ST37 acupoint. A period of 30- to 45-min, but not 15-min, 43°C heating-needle stimulation applied to the ST36 acupoint significantly enhanced the HPT, and had no effect on PPT. Upon trapezius muscle pain elicited by the i.m. injection of 5.8% saline, pre-emptive treatment of the contralateral ST36 acupoint with 43°C heating-needle stimulation alleviated the ongoing muscle pain, reduced painful area, and reversed the decrease in HPT. It is suggested that (1) pain elicited from the acupoint and non-acupoint areas differs significantly, which are supposed to be dependent on the different distributions and contributions of capsaicin-sensitive afferents. (2) Non-painful heat stimulation is a valid approach in prevention of ongoing muscle pain with associated post-effects of peripheral and central sensitization.
Collapse
Affiliation(s)
- Jing Lei
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China; Institute of Biomedicine/Physiology, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Gang Ye
- Department of Rehabilitation Medicine, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai 200065, PR China
| | - Jiang-Tao Wu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an JiaoTong University, Xi'an 710049, PR China
| | - Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Hao-Jun You
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
12
|
You HJ, Lei J, Xiao Y, Ye G, Sun ZH, Yang L, Niu N. Pre-emptive analgesia and its supraspinal mechanisms: enhanced descending inhibition and decreased descending facilitation by dexmedetomidine. J Physiol 2016; 594:1875-90. [PMID: 26732231 DOI: 10.1113/jp271991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/04/2016] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Despite the clinical importance of pre-emptive analgesia, the mechanisms by which it attenuates pain associated with central sensitization are poorly understood. We find that fentanyl and the α2-adrenoceptor agonist dexmedetomidine (Dex) differ significantly in their modulatory actions on noxious mechanical and noxious heat-evoked nociception in vivo. Unlike fentanyl, Dex modified descending control of nociception by decreasing the threshold for descending inhibition and/or increasing the threshold for descending facilitation. Dex exhibited after-actions on activities of thalamus in prolongation of noxious heat-evoked paw withdrawal latency that persisted for at least 7 days. This study provides insight into the organization of thalamic modulation in pre-emptive analgesia. ABSTRACT We investigated and compared the antinociceptive effects of intraperitoneal administration of fentanyl (2-60 μg kg(-1)) and dexmedetomidine (Dex, 1-10 μg kg(-1); a highly selective α2-adrenoceptor agonist) in the regulation of nociception assessed by measuring noxious paw withdrawal reflexes in rats. Fentanyl elevated noxious mechanical paw withdrawal threshold and prolonged paw withdrawal heat latency within 1-1.5 h (P < 0.05). Dex failed to affect the mechanical paw withdrawal threshold, yet significantly prolonged the paw withdrawal heat latency in a bi-phasic manner; a short transient 1-1.5 h period followed by a second, slowly developing increase in latency that persisted for at least 7 days (P < 0.05). Lesion of the dorsolateral funiculus (DLF) did not influence fentanyl-induced antinociceptive effects, indicating peripheral and spinal antinociceptive mechanisms. By contrast, the Dex-induced second, but not the first, phase of the prolonged paw withdrawal heat latency was significantly blocked by the lesion of either DLF or thalamic ventromedial (VM) nuclei, and was attenuated by intracerebral administration of either atipamezole (α2-adrenoceptor antagonist) or WAY-100635 (5-HT1A receptor antagonist) into the VM nuclei (P < 0.05). Upon intramuscular 5.8% saline-induced muscle nociception, pre-emptive injection of fentanyl enhanced mechanical hyperalgesia and blocked heat hypoalgesia, whereas Dex significantly prevented the occurrence of mechanical hyperalgesia and enhanced heat hypoalgesia. It is suggested that Dex, but not fentanyl, significantly enhances descending inhibition and/or decreases descending facilitation to modulate pain and nociception. The present study provides novel insight into thalamus-mediated mechanisms in pre-emptive analgesia.
Collapse
Affiliation(s)
- Hao-Jun You
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jing Lei
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Ying Xiao
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.,Department of Anesthesia, First affiliated hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Gang Ye
- Department of Pain, Tongji Hospital affiliated to Shanghai Tongji University, Shanghai, 200065, PR China
| | - Zhi-Hong Sun
- College of Life Science, Yan'an University, Yan'an, 716000, PR China
| | - Lan Yang
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Nan Niu
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China
| |
Collapse
|
13
|
Lei J, Pertovaara A, You HJ. Effects of simulated weightlessness on intramuscular hypertonic saline induced muscle nociception and spinal Fos expression in rats. Brain Res 2014; 1594:204-14. [PMID: 25446440 DOI: 10.1016/j.brainres.2014.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/20/2014] [Accepted: 11/08/2014] [Indexed: 12/30/2022]
Abstract
We assessed the effects of simulated weightlessness, hindlimb unloading (HU) by 7 days of tail suspension, on noxious mechanically and heat evoked spinal withdrawal reflexes and spinal Fos expression during muscle nociception elicited by intramuscular (i.m.) injection of hypertonic (HT; 5.8%) saline into gastrocnemius muscle in rats. In HU rats, i.m. HT saline-induced secondary mechanical hyperalgesia was enhanced, and secondary heat hypoalgesia was significantly delayed. After 7 days of HU, basal Fos expression in spinal L4-6 segments was bilaterally enhanced only in superficial (I-II) but not middle and deep laminae (III-VI) of the spinal dorsal horn, which finding was not influenced by tail denervation. Unilateral i.m. HT saline injection increased spinal Fos expression bilaterally in both the control rats and 7 days of HU rats. The HT saline-induced bilateral increase of spinal Fos occurred within 0.5h and reached its peak within 1h, after which it gradually returned to the control levels within 8h. Spatial patterns of spinal Fos expression differed between the control group and 7 days of HU group. In superficial laminae, the HT saline-induced increases in Fos expression were higher and in the middle and deep laminae V-VI lower in the 7 days of HU than control rats. It is suggested that supraspinal mechanisms presumably underlie the effects of HU on spinally-organized nociception. Simulated weightlessness may enhance descending facilitation and weaken descending inhibition of nociception.
Collapse
Affiliation(s)
- Jing Lei
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi׳an Jiaotong University, Xi׳an 710061, PR China
| | - Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Hao-Jun You
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi׳an Jiaotong University, Xi׳an 710061, PR China.
| |
Collapse
|
14
|
You HJ, Lei J, Ye G, Fan XL, Li Q. Influence of intramuscular heat stimulation on modulation of nociception: complex role of central opioid receptors in descending facilitation and inhibition. J Physiol 2014; 592:4365-80. [PMID: 25038244 DOI: 10.1113/jphysiol.2014.275800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been reported that the threshold to activate 'silent' or inactive descending facilitation of nociception is lower than that of descending inhibition. Thus, the development of pain therapy to effectively drive descending inhibition alone, without the confounding influences of facilitation is a challenge. To address this issue we investigated the effects of intramuscular stimulation with a heating-needle on spinal nociception, assessed by measuring nociceptive paw withdrawal reflex in rats. Additionally, involvement of the thalamic 'nociceptive discriminators' (thalamic mediodorsal (MD) and ventromedial (VM) nuclei), and opioid-mediated mechanisms were further explored. Descending facilitation and inhibition were elicited by 46°C noxious heating-needle stimulation, and were regulated by thalamic MD and VM nuclei, respectively. In contrast, innocuous heating-needle stimulation at a temperature of 43°C elicited descending inhibition modulated by the thalamic VM nucleus alone. Microinjection of μ/δ/κ-opioid receptor antagonists β-funaltrexamine hydrochloride/naltrindole/nor-binaltorphimine, into the VM nucleus attenuated the 46°C intramuscular heating-needle stimulation-evoked descending inhibition, whereas treatment of the MD nucleus with β-funaltrexamine hydrochloride significantly decreased the descending facilitation. By contrast, descending inhibition evoked by 43°C heating-needle stimulation was only depressed by naltrindole, as opposed to μ- and κ-opioid receptor antagonists, which failed to influence descending inhibition. The present study reveals distinct roles of μ-opioid receptors in the function of thalamic MD and VM nuclei,which exert facilitatory and inhibitory actions on nociception. Furthermore, innocuous, but not noxious, intramuscular heating-needle stimulation targeting δ-opioid receptors is suggested to be a promising avenue for the effective inhibition of pain.
Collapse
Affiliation(s)
- Hao-Jun You
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jing Lei
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Gang Ye
- Department of Pain, Tongji Hospital affiliated to Shanghai Tongji University, Shanghai, 200065, P.R. China
| | - Xiao-Li Fan
- Department of Physiology, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Qiang Li
- Department of Physiology, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| |
Collapse
|
15
|
Roles of the periaqueductal gray in descending facilitatory and inhibitory controls of intramuscular hypertonic saline induced muscle nociception. Exp Neurol 2014; 257:88-94. [DOI: 10.1016/j.expneurol.2014.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 12/31/2022]
|
16
|
Chopade AR, Sayyad FJ, Naikwade NS. Pharmacological characterization of carrageenan induced heat muscle hyperalgesia in rats using non-selective, preferential and selective COX-2 inhibitors. Pharmacol Rep 2014; 66:353-62. [DOI: 10.1016/j.pharep.2013.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 11/18/2013] [Accepted: 12/12/2013] [Indexed: 11/26/2022]
|
17
|
Staud R. The important role of CNS facilitation and inhibition for chronic pain. ACTA ACUST UNITED AC 2013; 8:639-646. [PMID: 24489609 DOI: 10.2217/ijr.13.57] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple studies have demonstrated that the pain experience among individuals is highly variable. Even under circumstances where the tissue injuries are similar, individual pain experiences may vary drastically. However, this individual difference in pain sensitivity is not only related to sensitivity of peripheral pain receptors, but also to variability in CNS pain processing. Peripheral impulses derived from tissue receptors undergo modification in dorsal horn neurons that can either result in inhibition or facilitation of pain. Such influences are particularly apparent in inflammation where not only peripheral, but also central, pain modulatory mechanisms can significantly increase nociceptive pain. Emotional state, level of anxiety, attention and distraction, memories, stress, fatigue and many other factors can either increase or reduce the pain experience. Increasing evidence suggests that 'bottom-up' and 'top-down' modulatory circuits within the spinal cord and brain play an important role in pain processing, which can profoundly affect the experience of pain.
Collapse
Affiliation(s)
- Roland Staud
- Division of Rheumatology & Clinical Immunology, University of Florida, PO Box 100221, Gainesville, FL 32610-0221, USA, Tel.: +1 352 273 9681
| |
Collapse
|