1
|
Zhu K, Wang H, Ye K, Chen G, Zhang Z. Netrin-1 signaling pathway mechanisms in neurodegenerative diseases. Neural Regen Res 2025; 20:960-972. [PMID: 38989931 PMCID: PMC11438344 DOI: 10.4103/nrr.nrr-d-23-01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/16/2024] [Indexed: 07/12/2024] Open
Abstract
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development. Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function. Increasing amounts of evidence highlight several key points: (1) Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer's disease and Parkinson's disease, and potentially, similar alterations occur in humans. (2) Genetic mutations of Netrin-1 receptors increase an individuals' susceptibility to neurodegenerative disorders. (3) Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function. (4) Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers. These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases. Through a comprehensive review of Netrin-1 signaling pathways, our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kedong Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hualong Wang
- Department of Neurology, The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Heibei Province, Shijiazhuang, Hebei Province, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Chen Y, Zheng YX, Li YZ, Jia Z, Yuan Y. GDNF facilitates cognitive function recovery following neonatal surgical-induced learning and memory impairment via activation of the RET pathway and modulation of downstream effectors PKMζ and Kalirin in rats. Brain Res Bull 2024; 217:111078. [PMID: 39270804 DOI: 10.1016/j.brainresbull.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions. METHODS Newborn Sprague-Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (n=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3 % sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses. The left hemibrains underwent Golgi staining, while the right hemibrains were used for hippocampal protein extraction to assess Protein kinase Mζ (PKMζ) and Kalirin expression through western blotting. RESULTS GDNF demonstrated a mitigating effect on spatial learning and memory impairment, as well as context-related fear memory impairment, reductions in dendritic total lengths, and spinal density within the hippocampus induced by surgical intervention. Notably, all of these ameliorative effects of GDNF were reversed upon administration of the RET inhibitor BBT594. Additionally, GDNF alleviated the downregulation of protein expression of PKMζ and Kalirin in the hippocampus of rats subjected to surgery, subsequently reversed by BBT594. CONCLUSION The effective impact of GDNF on learning and memory impairment caused by surgical intervention appears to be mediated through the RET pathway. Moreover, GDNF may exert its influence by upregulating the expression of PKMζ and Kalirin, consequently enhancing the development of dendrites and dendritic spines.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yi-Ze Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Jia
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Yuan
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
3
|
Hernandez-Morato I, Koss S, Honzel E, Pitman MJ. Netrin-1 as A neural guidance protein in development and reinnervation of the larynx. Ann Anat 2024; 254:152247. [PMID: 38458575 DOI: 10.1016/j.aanat.2024.152247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States; Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Madrid, Spain.
| | - Shira Koss
- ENT Associates of Nassau County, Levittown, NY, United States
| | - Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
4
|
Chen G, Ahn EH, Kang SS, Xia Y, Liu X, Zhang Z, Ye K. UNC5C Receptor Proteolytic Cleavage by Active AEP Promotes Dopaminergic Neuronal Degeneration in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103396. [PMID: 35023303 PMCID: PMC8895126 DOI: 10.1002/advs.202103396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Netrin-1 is a chemotropic cue mediating axon growth and neural migration in neuronal development, and its receptors deletion in colorectal cancer and UNC5s act as dependence receptors regulating neuronal apoptosis. Asparagine endopeptidase (AEP) is an age-dependent protease that cuts human alpha-synuclein (α-Syn) at N103 and triggers its aggregation and neurotoxicity. In the current study, it is reported that UNC5C receptor is cleaved by AEP in Parkinson's disease (PD) and facilitates dopaminergic neuronal loss. UNC5C is truncated by active AEP in human α-SNCA transgenic mice in an age-dependent manner or induced by neurotoxin rotenone. Moreover, UNC5C is fragmented by AEP in PD brains, inversely correlated with reduced netrin-1 levels. Netrin-1 deprivation in primary cultures induces AEP and caspase-3 activation, triggering UNC5C proteolytic fragmentation and enhancing neuronal loss. Noticeably, blocking UNC5C cleavage by AEP attenuates netrin-1 deprivation-elicited neuronal death and motor disorders in netrin flox/flox mice. Overexpression of AEP-truncated UNC5C intracellular fragment strongly elicits α-Syn aggregation and dopaminergic loss, locomotor deficits in α-SNCA transgenic mice. Hence, the findings demonstrate that netrin-1 reduction and UNC5C truncation by AEP contribute to PD pathogenesis.
Collapse
Affiliation(s)
- Guiqin Chen
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060China
| | - Eun Hee Ahn
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
| | - Seong Su Kang
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
| | - Yiyuan Xia
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
| | - Xia Liu
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
| | - Zhaohui Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060China
| | - Keqiang Ye
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
- Faculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518035China
- The Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518035China
| |
Collapse
|
5
|
Zhai J, Kim H, Han SB, Manire M, Yoo R, Pang S, Smith GM, Son YJ. Co-targeting myelin inhibitors and CSPGs markedly enhances regeneration of GDNF-stimulated, but not conditioning-lesioned, sensory axons into the spinal cord. eLife 2021; 10:63050. [PMID: 33942723 PMCID: PMC8139830 DOI: 10.7554/elife.63050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
A major barrier to intraspinal regeneration after dorsal root (DR) injury is the DR entry zone (DREZ), the CNS/PNS interface. DR axons stop regenerating at the DREZ, even if regenerative capacity is increased by a nerve conditioning lesion. This potent blockade has long been attributed to myelin-associated inhibitors and (CSPGs), but incomplete lesions and conflicting reports have prevented conclusive agreement. Here, we evaluated DR regeneration in mice using novel strategies to facilitate complete lesions and analyses, selective tracing of proprioceptive and mechanoreceptive axons, and the first simultaneous targeting of Nogo/Reticulon-4, MAG, OMgp, CSPGs, and GDNF. Co-eliminating myelin inhibitors and CSPGs elicited regeneration of only a few conditioning-lesioned DR axons across the DREZ. Their absence, however, markedly and synergistically enhanced regeneration of GDNF-stimulated axons, highlighting the importance of sufficiently elevating intrinsic growth capacity. We also conclude that myelin inhibitors and CSPGs are not the primary mechanism stopping axons at the DREZ.
Collapse
Affiliation(s)
- Jinbin Zhai
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Seung Baek Han
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Meredith Manire
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Rachel Yoo
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Shuhuan Pang
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - George M Smith
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| |
Collapse
|
6
|
Mercado J, Pérez-Rigueiro J, González-Nieto D, Lozano-Picazo P, López P, Panetsos F, Elices M, Gañán-Calvo AM, Guinea GV, Ramos-Gómez M. Regenerated Silk Fibers Obtained by Straining Flow Spinning for Guiding Axonal Elongation in Primary Cortical Neurons. ACS Biomater Sci Eng 2020; 6:6842-6852. [PMID: 33320622 DOI: 10.1021/acsbiomaterials.0c00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recovery of injured nervous tissue, one of the main goals for regenerative therapeutic approaches, is often hindered by the limited axonal regeneration ability of the central nervous system (CNS). In this regard, the identification of scaffolds that support the reconstruction of functional neuronal tissues and guide the alignment of regenerating neurons is a major challenge in tissue engineering. Ideally, the usage of such scaffolds would promote and guide the axonal growth, a crucial phase for the restoration of neuronal connections and, consequently, the nerve function. Among the materials proposed as scaffolds for CNS regeneration, silk has been used to exploit its outstanding features as a biomaterial to promote axonal regeneration. In this study, we explore, for the first time, the possibility of using high-performance regenerated silk fibers obtained by straining flow spinning (SFS) to serve as scaffolds for inducing and guiding the axonal growth. It is shown that SFS fibers promote the spontaneous organization of dissociated cortical primary cells into highly interconnected cellular spheroid-like tissue formations. Neuronal projections (i.e., axons) from these cellular spheroids span hundreds of microns along the SFS fibers that act as guides and allow the connection of distant spheroids. In addition, it is also shown that SFS fibers serve as scaffolds for neuronal migration covering short and long distances. As a consequence, the usage of high-performance SFS fibers appears as a promising basis for the development of novel therapies, leading to directed axonal regeneration.
Collapse
Affiliation(s)
- Juan Mercado
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.,Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Paloma Lozano-Picazo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Patricia López
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain.,Brain Plasticity Group, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alfonso M Gañán-Calvo
- Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Milagros Ramos-Gómez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.,Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
7
|
Ghosh B, Zhang C, Ziemba KS, Fletcher AM, Yurek DM, Smith GM. Partial Reconstruction of the Nigrostriatal Circuit along a Preformed Molecular Guidance Pathway. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:217-227. [PMID: 31417940 PMCID: PMC6690717 DOI: 10.1016/j.omtm.2019.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023]
Abstract
The overall goal of our research is to establish a preformed molecular guidance pathway to direct the growth of dopaminergic axons from embryonic ventral mesencephalon (VM), tissue placed within the substantia nigra (SN), into the striatum to reconstruct the nigrostriatal pathway in a hemi-Parkinson's disease rat model. Guidance pathways were prepared by injecting lentivirus encoding either GFP or a combination of glial-cell-line-derived neurotrophic factor (GDNF) with either GDNF family receptor α1 (GFRα1) or netrin1. In another cohort of animals, adeno-associated virus (AAV) encoding brain-derived neurotrophic factor (BDNF) was injected within the striatum after guidance pathway formation. GDNF combined with either GFRα1 or netrin significantly increased growth of dopaminergic axons out of transplants and along the pathway, resulting in a significant reduction in the number of amphetamine-induced rotations. Retrograde tract tracing showed that the dopaminergic axons innervating the striatum were from A9 neurons within the transplant. Increased dopaminergic innervation of the striatum and improved behavioral recovery were observed with the addition of BDNF. Preformed guidance pathways using a combination of GDNF and netrin1 can be used to reconstruct the nigrostriatal pathway and improve motor recovery.
Collapse
Affiliation(s)
- Biswarup Ghosh
- Center for Neural Repair and Rehabilitation, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19104, USA
| | - Chen Zhang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Kristine S. Ziemba
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Anita M. Fletcher
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - David M. Yurek
- Department of Neurosurgery and University of Kentucky Nanobiotechnology Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - George M. Smith
- Center for Neural Repair and Rehabilitation, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19104, USA
- Corresponding author: George M. Smith, Center for Neural Repair and Rehabilitation, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad St., MERB 6th Floor, Philadelphia, PA 19140, USA.
| |
Collapse
|
8
|
Kalaani J, Roche J, Hamade E, Badran B, Jaber M, Gaillard A, Prestoz L. Axon guidance molecule expression after cell therapy in a mouse model of Parkinson's disease. Restor Neurol Neurosci 2018; 34:877-895. [PMID: 27858721 DOI: 10.3233/rnn-150587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Cell therapy is a promising approach for Parkinson's disease (PD). Others and we have previously shown that transplantation of ventral mesencephalic fetal cells into substantia nigra (SN) in an animal model of PD enables anatomical and functional repair of the degenerated pathway. However, the molecular basis of this repair is still largely unknown. OBJECTIVE In this work, we studied the expression of several axon guidance molecules that may be implicated in the repair of the degenerated nigrostriatal pathway. METHODS The expression of axon guidance molecules was analyzed using qRT-PCR on five specific regions surrounding the nigrostriatal pathway (ventral mesencephalon (VM), thalamus (Thal), medial forebrain bundle (MFB), nucleus accumbens (NAcc) and caudate putamen (CPu)), one and seven days after lesion and transplantation. RESULTS We showed that mRNA expression of specific axon guidance molecules and their receptors is modified in structures surrounding the nigrostriatal pathway, suggesting their involvement in the axon guidance of grafted neurons. Moreover, we highlight a possible new role for semaphorin 7A in this repair. CONCLUSION Overall, our data provide a reliable basis to understand how axons of grafted neurons are able to navigate towards their targets and interact with the molecular environment in the adult brain. This should help to improve the efficiency of cell replacement approaches in PD.
Collapse
Affiliation(s)
- Joanna Kalaani
- Université de Poitiers, INSERM U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Poitiers, France
| | - Joëlle Roche
- Université de Poitiers, INSERM U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Poitiers, France
| | - Eva Hamade
- Doctoral School of Sciences and Technology (DSST-PRASE), Lebanese University, Hadath, Lebanon
| | - Bassam Badran
- Doctoral School of Sciences and Technology (DSST-PRASE), Lebanese University, Hadath, Lebanon
| | - Mohamed Jaber
- Université de Poitiers, INSERM U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Poitiers, France.,CHU de Poitiers, Poitiers, France
| | - Afsaneh Gaillard
- Université de Poitiers, INSERM U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Poitiers, France
| | - Laetitia Prestoz
- Université de Poitiers, INSERM U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Poitiers, France
| |
Collapse
|
9
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
10
|
Wianny F, Vezoli J. Transplantation in the nonhuman primate MPTP model of Parkinson's disease: update and perspectives. Primate Biol 2017; 4:185-213. [PMID: 32110706 PMCID: PMC7041537 DOI: 10.5194/pb-4-185-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
In order to calibrate stem cell exploitation for cellular therapy in neurodegenerative diseases, fundamental and preclinical research in NHP (nonhuman primate) models is crucial. Indeed, it is consensually recognized that it is not possible to directly extrapolate results obtained in rodent models to human patients. A large diversity of neurological pathologies should benefit from cellular therapy based on neural differentiation of stem cells. In the context of this special issue of Primate Biology on NHP stem cells, we describe past and recent advances on cell replacement in the NHP model of Parkinson's disease (PD). From the different grafting procedures to the various cell types transplanted, we review here diverse approaches for cell-replacement therapy and their related therapeutic potential on behavior and function in the NHP model of PD.
Collapse
Affiliation(s)
- Florence Wianny
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| |
Collapse
|
11
|
Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration. J Neurosci 2017; 37:10955-10970. [PMID: 28982707 DOI: 10.1523/jneurosci.0903-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 11/21/2022] Open
Abstract
Following nerve injury, denervated Schwann cells (SCs) convert to repair SCs, which enable regeneration of peripheral axons. However, the repair capacity of SCs and the regenerative capacity of peripheral axons are limited. In the present studies we examined a potential therapeutic strategy to enhance the repair capacity of SCs, and tested its efficacy in enhancing regeneration of dorsal root (DR) axons, whose regenerative capacity is particularly weak. We used male and female mice of a doxycycline-inducible transgenic line to induce expression of constitutively active ErbB2 (caErbB2) selectively in SCs after DR crush or transection. Two weeks after injury, injured DRs of induced animals contained far more SCs and SC processes. These SCs had not redifferentiated and continued to proliferate. Injured DRs of induced animals also contained far more axons that regrew along SC processes past the transection or crush site. Remarkably, SCs and axons in uninjured DRs remained quiescent, indicating that caErbB2 enhanced regeneration of injured DRs, without aberrantly activating SCs and axons in intact nerves. We also found that intraspinally expressed glial cell line-derived neurotrophic factor (GDNF), but not the removal of chondroitin sulfate proteoglycans, greatly enhanced the intraspinal migration of caErbB2-expressing SCs, enabling robust penetration of DR axons into the spinal cord. These findings indicate that SC-selective, post-injury activation of ErbB2 provides a novel strategy to powerfully enhance the repair capacity of SCs and axon regeneration, without substantial off-target damage. They also highlight that promoting directed migration of caErbB2-expressing SCs by GDNF might be useful to enable axon regrowth in a non-permissive environment.SIGNIFICANCE STATEMENT Repair of injured peripheral nerves remains a critical clinical problem. We currently lack a therapy that potently enhances axon regeneration in patients with traumatic nerve injury. It is extremely challenging to substantially increase the regenerative capacity of damaged nerves without deleterious off-target effects. It was therefore of great interest to discover that caErbB2 markedly enhances regeneration of damaged dorsal roots, while evoking little change in intact roots. To our knowledge, these findings are the first demonstration that repair capacity of denervated SCs can be efficaciously enhanced without altering innervated SCs. Our study also demonstrates that oncogenic ErbB2 signaling can be activated in SCs but not impede transdifferentiation of denervated SCs to regeneration-promoting repair SCs.
Collapse
|
12
|
Kramer ER, Liss B. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett 2015; 589:3760-72. [DOI: 10.1016/j.febslet.2015.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
|
13
|
Merighi A. Targeting the glial-derived neurotrophic factor and related molecules for controlling normal and pathologic pain. Expert Opin Ther Targets 2015; 20:193-208. [PMID: 26863504 DOI: 10.1517/14728222.2016.1085972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Glial-derived neurotrophic factor (GDNF) and its family of ligands (GFLs) have several functions in the nervous system. As a survival factor for dopaminergic neurons, GDNF was used in clinical trials for Parkinson's disease. GFLs and their receptors are also potential targets for new pain-controlling drugs. Although molecules with analgesic activities in rodents mostly failed to be effective in translational studies, this potential should not be underestimated. AREAS COVERED The circuitry, molecular, and cellular mechanisms by which GFLs control nociception and their intervention in inflammatory and neuropathic pain are considered first. The problems related to effective GDNF delivery to the brain and the possibility to target the GFL receptor complex rather than its ligands are then discussed, also considering the use of non-peptidyl agonists. EXPERT OPINION In nociceptive pathways, an ideal drug should either: i) target the release of endogenous GFLs from large dense-cored vesicles (LGVs) by acting, for example, onto the phosphatidylinositol-3-phosphate [PtdIns(3)P] pool, which is sensitive to Ca(2+) modulation, or ii) target the GFL receptor complex. Besides XIB403, a tiol molecule that enhances GFRα family receptor signaling, existing drugs such as retinoic acid and amitriptyline should be considered for effective targeting of GDNF, at least in neuropathic pain. The approach of pain modeling in experimental animals is discussed.
Collapse
Affiliation(s)
- Adalberto Merighi
- a University of Turin, Department of Veterinary Sciences , Grugliasco, TO, Italy ;
| |
Collapse
|
14
|
Kelamangalath L, Tang X, Bezik K, Sterling N, Son YJ, Smith GM. Neurotrophin selectivity in organizing topographic regeneration of nociceptive afferents. Exp Neurol 2015; 271:262-78. [PMID: 26054884 DOI: 10.1016/j.expneurol.2015.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/22/2015] [Accepted: 06/03/2015] [Indexed: 01/28/2023]
Abstract
Neurotrophins represent some of the best candidates to enhance regeneration. In the current study, we investigated the effects of artemin, a member of the glial derived neurotrophic factor (GDNF) family, on sensory axon regeneration following a lumbar dorsal root injury and compared these effects with that observed after either NGF or GDNF expression in the rat spinal cord. Unlike previously published data, artemin failed to induce regeneration of large-diameter myelinated sensory afferents when expressed within either the spinal cord or DRG. However, artemin or NGF induced regeneration of calcitonin gene related peptide positive (CGRP(+)) axons only when expressed within the spinal cord. Accordingly, artemin or NGF enhanced recovery of only nociceptive behavior and showed a cFos distribution similar to the topography of regenerating axons. Artemin and GDNF signaling requires binding to different co-receptors (GFRα3 or GFRα1, respectively) prior to binding to the signaling receptor, cRet. Approximately 70% of DRG neurons express cRet, but only 35% express either co-receptor. To enhance artemin-induced regeneration, we co-expressed artemin with either GFRα3 or GDNF. Co-expression of artemin and GFRα3 only slightly enhanced regeneration of IB4(+) non-peptidergic nociceptive axons, but not myelinated axons. Interestingly, this co-expression also disrupted the ability of artemin to produce topographic targeting and lead to significant increases in cFos immunoreactivity within the deep dorsal laminae. This study failed to demonstrate artemin-induced regeneration of myelinated axons, even with co-expression of GFRα3, which only promoted mistargeted regeneration.
Collapse
Affiliation(s)
- Lakshmi Kelamangalath
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaoqing Tang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Kathleen Bezik
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Noelle Sterling
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
15
|
Bonner JF, Steward O. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Res 2015; 1619:115-23. [PMID: 25591483 DOI: 10.1016/j.brainres.2015.01.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 02/01/2023]
Abstract
Spinal cord injury (SCI) disrupts the long axonal tracts of the spinal cord leading to devastating loss of function. Cell transplantation in the injured spinal cord has the potential to lead to recovery after SCI via a variety of mechanisms. One such strategy is the formation of neuronal relays between injured long tract axons and denervated neurons. The idea of creating a neuronal relay was first proposed over 25 years ago when fetal tissue was first successfully transplanted into the injured rodent spinal cord. Advances in labeling of grafted cells and the development of neural stem cell culturing techniques have improved the ability to create and refine such relays. Several recent studies have examined the ability to create a novel neuronal circuit between injured axons and denervated targets. This approach is an alternative to long-distance regeneration of damaged axons that may provide a meaningful degree of recovery without direct recreation of lost pathways. This brief review will examine the contribution of fetal grafting to current advances in neuronal grafting. Of particular interest will be the ability of transplanted neurons derived from fetal grafts, neural precursor cells and neural stem cells to reconnect long distance motor and sensory pathways of the injured spinal cord. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Joseph F Bonner
- Reeve-Irvine Research Center, University of California, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4265, USA.
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4265, USA; Departments of Anatomy & Neurobiology, Neurobiology & Behavior, and Neurosurgery, University of California at Irvine School of Medicine, Irvine, CA 92697-4265, USA
| |
Collapse
|
16
|
Ghosh B, Zhang C, Smith GM. Bridging between transplantation therapy and neurotrophic factors in Parkinson's disease. Front Biosci (Elite Ed) 2014; 6:225-35. [PMID: 24896204 PMCID: PMC11375561 DOI: 10.2741/e704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) represents a challenging condition where different therapeutic options have evolved over the course of the last 50 years. The potential for therapeutic use of cell transplantation for cell replacement or for gene delivery of neurotrophic factors has received a great deal of attention. Currently, all available treatment options are directed towards the amelioration of symptoms. A greater understanding of the distinctive pathology underlying PD might offer some novel therapeutic approaches. Transplantation of embryonic ventral mesencephalon (VM) dopaminergic neurons has shown promise in animal studies, but similar transplant procedures have shown limited success in clinical trials. One important issue may be the site of transplantation. Previous studies have transplanted VM into the striatum, which is the target of these neurons. With increased understanding of growth and guidance molecule effecting dopaminergic neurons, it may be feasible to place transplants in the damaged substantia nigra and direct the growth of axons into target regions to reconstruction of midbrain dopamine (DA) circuitry. Our established and on-going understanding of the molecular cues which support directed growth of DA neurons form an important basis for the refinement and optimization of VM grafting procedures, and also the development of new procedures based on the use of stem cells. In this review, we discuss transplantation therapy and how selective guidance molecules could be used to reconstruction of nigrostriatal circuit.
Collapse
Affiliation(s)
- Biswarup Ghosh
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, and Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106
| | - Chen Zhang
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, and Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106
| | - George M Smith
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, and Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106
| |
Collapse
|
17
|
Collier TJ. Rebuilding the nigrostriatal dopamine pathway: 30 years and counting. Exp Neurol 2014; 256:21-4. [PMID: 24681002 DOI: 10.1016/j.expneurol.2014.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/05/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Timothy J Collier
- Michigan State University, Translational Science & Molecular Medicine, Udall Center of Excellence in Parkinson's Disease Research, Edwin A. Brophy Endowed Chair in Central Nervous System Disorders, Grand Rapids, MI 49503.
| |
Collapse
|