1
|
Gong L, Jiang S, Tian J, Li Y, Yu W, Zhang L, Xiao D. STZ-induced gestational diabetes exposure alters PTEN/AKT/mTOR-mediated autophagy signaling pathway leading to increase the risk of neonatal hypoxic-ischemic encephalopathy. Reprod Toxicol 2024; 123:S0890-6238(23)00168-5. [PMID: 38706688 PMCID: PMC11068333 DOI: 10.1016/j.reprotox.2023.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 05/07/2024]
Abstract
Exposure to gestational diabetes mellitus (GDM) during pregnancy has significant consequences for the unborn baby and newborn infant. However, whether and how GDM exposure induces the development of neonatal brain hypoxia/ischemia-sensitive phenotype and the underlying molecular mechanisms remain unclear. In this study, we used a late GDM rat model induced by administration of streptozotocin (STZ) on gestational day 12 and investigated its effects of GDM on neonatal brain development. The pregnant rats exhibited increased blood glucose levels in a dose-dependent manner after STZ administration. STZ-induced maternal hyperglycemia led to reduced blood glucose levels in neonatal offspring, resulting in growth restriction and an increased brain to body weight ratio. Importantly, GDM exposure increased susceptibility to hypoxia/ischemia (HI)-induced brain infarct sizes compared to the controls in both male and female neonatal offspring. Further molecular analysis revealed alterations in the PTEN/AKT/mTOR/autophagy signaling pathway in neonatal male offspring brains, along with increased ROS production and autophagy-related proteins (Atg5 and LC3-II). Treatment with the PTEN inhibitor bisperoxovanadate (BPV) eliminated the differences in HI-induced brain infarct sizes between the GDM-exposed and the control groups. These findings provide novel evidence of the development of a brain hypoxia/ischemia-sensitive phenotype in response to GDM exposure and highlight the role of the PTEN/AKT/mTOR/autophagy signaling pathway in this process.
Collapse
Affiliation(s)
- Lei Gong
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
- Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Siyi Jiang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jia Tian
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Wansu Yu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
2
|
Kremsky I, Ma Q, Li B, Dasgupta C, Chen X, Ali S, Angeloni S, Wang C, Zhang L. Fetal hypoxia results in sex- and cell type-specific alterations in neonatal transcription in rat oligodendrocyte precursor cells, microglia, neurons, and oligodendrocytes. Cell Biosci 2023; 13:58. [PMID: 36932456 PMCID: PMC10022003 DOI: 10.1186/s13578-023-01012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Fetal hypoxia causes vital, systemic, developmental malformations in the fetus, particularly in the brain, and increases the risk of diseases in later life. We previously demonstrated that fetal hypoxia exposure increases the susceptibility of the neonatal brain to hypoxic-ischemic insult. Herein, we investigate the effect of fetal hypoxia on programming of cell-specific transcriptomes in the brain of neonatal rats. RESULTS We obtained RNA sequencing (RNA-seq) data from neurons, microglia, oligodendrocytes, A2B5+ oligodendrocyte precursor cells, and astrocytes from male and female neonatal rats subjected either to fetal hypoxia or control conditions. Substantial transcriptomic responses to fetal hypoxia occurred in neurons, microglia, oligodendrocytes, and A2B5+ cells. Not only were the transcriptomic responses unique to each cell type, but they also occurred with a great deal of sexual dimorphism. We validated differential expression of several genes related to inflammation and cell death by Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). Pathway and transcription factor motif analyses suggested that the NF-kappa B (NFκB) signaling pathway was enriched in the neonatal male brain due to fetal hypoxia, and we verified this result by transcription factor assay of NFκB-p65 in whole brain. CONCLUSIONS Our study reveals a significant impact of fetal hypoxia on the transcriptomes of neonatal brains in a cell-specific and sex-dependent manner, and provides mechanistic insights that may help explain the development of hypoxic-ischemic sensitive phenotypes in the neonatal brain.
Collapse
Affiliation(s)
- Isaac Kremsky
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Qingyi Ma
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Bo Li
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Xin Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Samir Ali
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Shawnee Angeloni
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Charles Wang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA. .,Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
3
|
Herrera EA, González-Candia A. Gestational Hypoxia and Blood-Brain Barrier Permeability: Early Origins of Cerebrovascular Dysfunction Induced by Epigenetic Mechanisms. Front Physiol 2021; 12:717550. [PMID: 34489733 PMCID: PMC8418233 DOI: 10.3389/fphys.2021.717550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 01/25/2023] Open
Abstract
Fetal chronic hypoxia leads to intrauterine growth restriction (IUGR), which is likely to reduce oxygen delivery to the brain and induce long-term neurological impairments. These indicate a modulatory role for oxygen in cerebrovascular development. During intrauterine hypoxia, the fetal circulation suffers marked adaptations in the fetal cardiac output to maintain oxygen and nutrient delivery to vital organs, known as the "brain-sparing phenotype." This is a well-characterized response; however, little is known about the postnatal course and outcomes of this fetal cerebrovascular adaptation. In addition, several neurodevelopmental disorders have their origins during gestation. Still, few studies have focused on how intrauterine fetal hypoxia modulates the normal brain development of the blood-brain barrier (BBB) in the IUGR neonate. The BBB is a cellular structure formed by the neurovascular unit (NVU) and is organized by a monolayer of endothelial and mural cells. The BBB regulates the entry of plasma cells and molecules from the systemic circulation to the brain. A highly selective permeability system achieves this through integral membrane proteins in brain endothelial cells. BBB breakdown and dysfunction in cerebrovascular diseases lead to leakage of blood components into the brain parenchyma, contributing to neurological deficits. The fetal brain circulation is particularly susceptible in IUGR and is proposed to be one of the main pathological processes deriving BBB disruption. In the last decade, several epigenetic mechanisms activated by IU hypoxia have been proposed to regulate the postnatal BBB permeability. However, few mechanistic studies about this topic are available, and little evidence shows controversy. Therefore, in this mini-review, we analyze the BBB permeability-associated epigenetic mechanisms in the brain exposed to chronic intrauterine hypoxia.
Collapse
Affiliation(s)
- Emilio A Herrera
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | | |
Collapse
|
4
|
Cristancho AG, Marsh ED. Epigenetics modifiers: potential hub for understanding and treating neurodevelopmental disorders from hypoxic injury. J Neurodev Disord 2020; 12:37. [PMID: 33327934 PMCID: PMC7745506 DOI: 10.1186/s11689-020-09344-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The fetal brain is adapted to the hypoxic conditions present during normal in utero development. Relatively more hypoxic states, either chronic or acute, are pathologic and can lead to significant long-term neurodevelopmental sequelae. In utero hypoxic injury is associated with neonatal mortality and millions of lives lived with varying degrees of disability. MAIN BODY Genetic studies of children with neurodevelopmental disease indicate that epigenetic modifiers regulating DNA methylation and histone remodeling are critical for normal brain development. Epigenetic modifiers are also regulated by environmental stimuli, such as hypoxia. Indeed, epigenetic modifiers that are mutated in children with genetic neurodevelopmental diseases are regulated by hypoxia in a number of preclinical models and may be part of the mechanism for the long-term neurodevelopmental sequelae seem in children with hypoxic brain injury. Thus, a comprehensive understanding the role of DNA methylation and histone modifications in hypoxic injury is critical for developing novel strategies to treat children with hypoxic injury. CONCLUSIONS This review focuses on our current understanding of the intersection between epigenetics, brain development, and hypoxia. Opportunities for the use of epigenetics as biomarkers of neurodevelopmental disease after hypoxic injury and potential clinical epigenetics targets to improve outcomes after injury are also discussed. While there have been many published studies on the epigenetics of hypoxia, more are needed in the developing brain in order to determine which epigenetic pathways may be most important for mitigating the long-term consequences of hypoxic brain injury.
Collapse
Affiliation(s)
- Ana G Cristancho
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Eric D Marsh
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
5
|
Shen G, Hu S, Zhao Z, Zhang L, Ma Q. Antenatal Hypoxia Accelerates the Onset of Alzheimer's Disease Pathology in 5xFAD Mouse Model. Front Aging Neurosci 2020; 12:251. [PMID: 32973487 PMCID: PMC7472639 DOI: 10.3389/fnagi.2020.00251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder associated with cognitive impairment and later dementia among the elderly. Mounting evidence shows that adverse maternal environments during the fetal development increase the risk of diseases later in life including neurological disorders, and suggests an early origin in the development of AD-related dementia (ADRD) in utero. In the present study, we investigated the impact of antenatal hypoxia and fetal stress on the initiation of AD-related pathology in offspring of 5xFAD mice. We showed that fetal hypoxia significantly reduced brain and body weight in the fetal and the early postnatal period, which recovered in young adult mice. Using spontaneous Y-maze, novel object recognition (NOR), and open field (OF) tasks, we found that antenatal hypoxia exacerbated cognitive decline in offspring of 5xFAD compared with normoxia control. Of interest, fetal hypoxia did not alter intraneuronal soluble amyloid-β (Aβ) oligomer accumulation in the cortex and hippocampus in 5xFAD mouse offspring, indicating that antenatal hypoxia increased the vulnerability of the brain to synaptotoxic Aβ in the disease onset later in life. Consistent with the early occurrence of cognitive decline, we found synapse loss but not neuronal death in the cerebral cortex in 5xFAD but not wild-type (WT) offspring exposed to antenatal hypoxia. Furthermore, we also demonstrated that antenatal hypoxia significantly increased microglial number and activation, and reactive astrogliosis in the cerebral cortex in WT offspring. Moreover, antenatal hypoxia resulted in an exacerbated increase of microgliosis and astrogliosis in the early stage of AD in 5xFAD offspring. Together, our study reveals a causative link between fetal stress and the accelerated onset of AD-related pathology, and provides mechanistic insights into the developmental origin of aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Shirley Hu
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lubo Zhang
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Qingyi Ma
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
6
|
Bustelo M, Barkhuizen M, van den Hove DLA, Steinbusch HWM, Bruno MA, Loidl CF, Gavilanes AWD. Clinical Implications of Epigenetic Dysregulation in Perinatal Hypoxic-Ischemic Brain Damage. Front Neurol 2020; 11:483. [PMID: 32582011 PMCID: PMC7296108 DOI: 10.3389/fneur.2020.00483] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Placental and fetal hypoxia caused by perinatal hypoxic-ischemic events are major causes of stillbirth, neonatal morbidity, and long-term neurological sequelae among surviving neonates. Brain hypoxia and associated pathological processes such as excitotoxicity, apoptosis, necrosis, and inflammation, are associated with lasting disruptions in epigenetic control of gene expression contributing to neurological dysfunction. Recent studies have pointed to DNA (de)methylation, histone modifications, and non-coding RNAs as crucial components of hypoxic-ischemic encephalopathy (HIE). The understanding of epigenetic dysregulation in HIE is essential in the development of new clinical interventions for perinatal HIE. Here, we summarize our current understanding of epigenetic mechanisms underlying the molecular pathology of HI brain damage and its clinical implications in terms of new diagnostic, prognostic, and therapeutic tools.
Collapse
Affiliation(s)
- Martín Bustelo
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Melinda Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Harry Wilhelm M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Martín A Bruno
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - C Fabián Loidl
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Antonio W Danilo Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Facultad de Ciencias Médicas, Instituto de Investigación e Innovación de Salud Integral, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| |
Collapse
|
7
|
Inhibition of Connexin43 hemichannels with Gap19 protects cerebral ischemia/reperfusion injury via the JAK2/STAT3 pathway in mice. Brain Res Bull 2018; 146:124-135. [PMID: 30593877 DOI: 10.1016/j.brainresbull.2018.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Functional disruption of the neurovascular unit may lead to aggravation of ischemic cerebral injury. Connexin43 (Cx43)-dependent gap junctional channels (GJCs) are critical in maintaining brain homeostasis. However, excessive opening of hemichannels (HCs) after cerebral ischemia may cause apoptosis and finally lead to amplification of ischemic injury. Previous studies indicated that Cx43 mimetic peptides Gap26 and Gap27 may protect cerebral ischemic injury, but the latest studies showed they also inhibit the opening of GJCs, which are beneficial for neuroprotection. Recent studies showed that Gap19 is a new specific inhibitor of Cx43 HCs. We investigated the role of Gap19 on cerebral ischemia/reperfusion (I/R) injury in a mouse model of middle cerebral artery occlusion (MCAO). Ventricle-injected Gap19 significantly alleviated infarct volume, neuronal cell damage and neurological deficits after ischemia, the neuroprotective effect of Gap19 was significant stronger than Gap26. Post-treatment with TAT-Gap19 still provided neuroprotection when it was administered intraperitoneally at 4 h after reperfusion. In addition, we found that Gap19 decreased the levels of cleaved caspase-3 and Bax and increased the level of Bcl-2, suggesting the anti-apoptotic activity of specifically blocking the Cx43 HCs. Furthermore, our data indicate that Gap19 treatment increased the levels of phosphorylated JAK2 and STAT3 both in vivo and in vitro. Gap19 inhibited hemichannel activity assessed by dye uptake in astrocytes. And we detected that pSTAT3 co-localized with Cx43 together in astrocytes after oxygen glucose deprivation (OGD) injury. Finally, AG490, a blocker of the JAK2/STAT3 pathway, could reverse the neuroprotective effects of Gap19 both in vivo and in vitro. Our experiment investigated the anti-apoptotic activity of Gap19, the specific inhibitor of Cx43 HCs, and the potential mechanisms. Our results demonstrated that Gap19 plays an anti-apoptotic role via activating the JAK2/STAT3 pathway after cerebral I/R injury, indicating that specific blocking of Cx43 HCs is a potential target for ischemic stroke.
Collapse
|
8
|
Fitzgerald E, Boardman JP, Drake AJ. Preterm Birth and the Risk of Neurodevelopmental Disorders - Is There a Role for Epigenetic Dysregulation? Curr Genomics 2018; 19:507-521. [PMID: 30386170 PMCID: PMC6158617 DOI: 10.2174/1389202919666171229144807] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/06/2017] [Accepted: 12/17/2017] [Indexed: 12/29/2022] Open
Abstract
Preterm Birth (PTB) accounts for approximately 11% of all births worldwide each year and is a profound physiological stressor in early life. The burden of neuropsychiatric and developmental impairment is high, with severity and prevalence correlated with gestational age at delivery. PTB is a major risk factor for the development of cerebral palsy, lower educational attainment and deficits in cognitive functioning, and individuals born preterm have higher rates of schizophrenia, autistic spectrum disorder and attention deficit/hyperactivity disorder. Factors such as gestational age at birth, systemic inflammation, respiratory morbidity, sub-optimal nutrition, and genetic vulnerability are associated with poor outcome after preterm birth, but the mechanisms linking these factors to adverse long term outcome are poorly understood. One potential mechanism linking PTB with neurodevelopmental effects is changes in the epigenome. Epigenetic processes can be defined as those leading to altered gene expression in the absence of a change in the underlying DNA sequence and include DNA methylation/hydroxymethylation and histone modifications. Such epigenetic modifications may be susceptible to environmental stimuli, and changes may persist long after the stimulus has ceased, providing a mechanism to explain the long-term consequences of acute exposures in early life. Many factors such as inflammation, fluctuating oxygenation and excitotoxicity which are known factors in PTB related brain injury, have also been implicated in epigenetic dysfunction. In this review, we will discuss the potential role of epigenetic dysregulation in mediating the effects of PTB on neurodevelopmental outcome, with specific emphasis on DNA methylation and the α-ketoglutarate dependent dioxygenase family of enzymes.
Collapse
Affiliation(s)
| | | | - Amanda J. Drake
- Address correspondence to this author at the University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK; Tel: 44 131 2426748; Fax: 44 131 2426779; E-mail:
| |
Collapse
|
9
|
Chen Y, Wang L, Zhang L, Chen B, Yang L, Li X, Li Y, Yu H. Inhibition of Connexin 43 Hemichannels Alleviates Cerebral Ischemia/Reperfusion Injury via the TLR4 Signaling Pathway. Front Cell Neurosci 2018; 12:372. [PMID: 30386214 PMCID: PMC6199357 DOI: 10.3389/fncel.2018.00372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
Connexin 43 (Cx43) widely exists in all components of the neurovascular unit (NVU) and is a constituent of gap junctions and hemichannels. In physiological states, gap junctions are open for regular intercellular communication, and the hemichannels present low open probability in astrocytes. After cerebral ischemia, a large number of hemichannels are unusually opened, leading to cell swelling and even death. Most known hemichannel blockers also inhibit gap junctions and sequentially obstruct normal electrical cell-cell communication. In this study, we tested the hypothesis that Gap19, a selective Cx43-hemichannel inhibitor, exhibited neuroprotective effects on cerebral ischemia/reperfusion (I/R). An obvious improvement in neurological scores and infarct volume reduction were observed in Gap19-treated mice after brain ischemia induced by middle cerebral artery occlusion (MCAO). Gap19 treatment attenuated white matter damage. Moreover, Gap19 treatment suppressed the expression of Cx43 and Toll-like receptor 4 (TLR4) pathway-relevant proteins and prevented the overexpression of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). To further explore downstream signaling, we established an in vitro model-oxygen glucose deprivation (OGD) to simulate ischemic conditions. Immunofluorescence staining showed that Cx43 co-existed with TLR4 in astrocytes. The hemichannel activity was increased after OGD and Gap19 could inhibit this effect on astrocytes. Gap19 substantially improved relative cell vitality and decreased the expression of Cx43, TLR4 and inflammatory cytokines in vitro. In addition, in the lipopolysaccharide (LPS) stimulation OGD model, Gap19 also exhibited a protective effect via inhibiting TLR4 pathway activation. In summary, our results showed that Gap19 exerted a neuroprotective effect after stroke via inhibition of the TLR4-mediated signaling pathway.
Collapse
Affiliation(s)
- Yingzhu Chen
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Liangzhu Wang
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Lingling Zhang
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Beilei Chen
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Liu Yang
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Xiaobo Li
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Institute of Neuroscience, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yuping Li
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hailong Yu
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Institute of Neuroscience, Northern Jiangsu People's Hospital, Yangzhou, China.,Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Chen X, Patra A, Sadowska GB, Stonestreet BS. Ischemic-Reperfusion Injury Increases Matrix Metalloproteinases and Tissue Metalloproteinase Inhibitors in Fetal Sheep Brain. Dev Neurosci 2018; 40:234-245. [PMID: 30048980 DOI: 10.1159/000489700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/29/2018] [Indexed: 12/31/2022] Open
Abstract
Hypoxic-ischemic brain injury is a leading cause of neurodevelopmental morbidities in preterm and full-term infants. Blood-brain barrier dysfunction represents an important component of perinatal hypoxic-ischemic brain injury. The extracellular matrix (ECM) is a vital component of the blood-brain barrier. Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) are important ECM components. They contribute to brain development, blood-brain barrier maintenance, and to regenerative and repair processes after hypoxic-ischemic brain injury. We hypothesized that ischemia at different durations of reperfusion affects the ECM protein composition of MMPs and TIMPs in the cerebral cortex of fetal sheep. Cerebral cortical samples were snap-frozen from sham control fetuses at 127 days of gestation and from fetuses after exposure to 30-min carotid occlusion and 4-, 24-, and 48-h of reperfusion. Protein expression of MMP-2, -8, -9, and -13 and TIMP-1, -2, -3, and -4 was measured by Western immunoblotting along with the gelatinolytic activity of MMP-2 and MMP-9 by zymography. The expression of MMP-8 was increased (Kruskal-Wallis, p = 0.04) in fetuses 48 h after ischemia. In contrast, changes were not observed in the protein expression of MMP-2, -9, or -13. The gelatinolytic activity of pro-MMP-2 was increased (ANOVA, p = 0.02, Tukey HSD, p = 0.05) 24 h after ischemia. TIMP-1 and -3 expression levels were also higher (TIMP-1, ANOVA, p = 0.003, Tukey HSD, p = 0.01; TIMP-3, ANOVA, p = 0.006, Tukey HSD, p = 0.01) 24 h after ischemia compared with both the sham controls and with fetuses exposed to 4 h of reperfusion. The changes in the expression of TIMP-1, -2, and -3 correlated with the changes in the MMP-8 and -13 protein expression. We speculate that regulation of MMP-8, MMP-13, and TIMPs contributes to ECM remodeling after is chemic-reperfusion injury in the fetal brain.
Collapse
|
11
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|