1
|
Modulation of Rab GDP-Dissociation Inhibitor Trafficking and Expression by the Transmembrane Protein 59 (TMEM59). SEPARATIONS 2022. [DOI: 10.3390/separations9110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transmembrane protein 59 (TMEM59) is a type I transmembrane protein. However, the characterization and functions of TMEM59 in cells are not clear. Our results showed that TMEM59 localizes to vesicular structures. Further co-localization studies illustrated that TMEM59 is mainly distributed in the lysosome and acidic vesicular. TMEM59 movement between the nucleus and cell membrane was observed in living cells expressing TMEM59–EGFP fusion proteins. In addition, cell surface transport of amyloid precursor protein (APP) was significantly inhibited by TMEM59 and increased APP levels in HEK296T cells. TMEM59 also significantly inhibits transport of Rab GDP dissociation inhibitor alpha (GDI1) and Rab GDP dissociation inhibitor beta (GDI2), and further increases expression of GDI1 and GDI2 proteins in the cytoplasm. However, TMEM59 does not affect protein expression and localization of BACE2. These results suggest that TMEM59 may be involved in the packaging of acidic vesicles, modulated transport, and processing of APP, GDI1, and GDI2.
Collapse
|
2
|
Pham L, Wright DK, O'Brien WT, Bain J, Huang C, Sun M, Casillas-Espinosa PM, Shah AD, Schittenhelm RB, Sobey CG, Brady RD, O'Brien TJ, Mychasiuk R, Shultz SR, McDonald SJ. Behavioral, axonal, and proteomic alterations following repeated mild traumatic brain injury: Novel insights using a clinically relevant rat model. Neurobiol Dis 2020; 148:105151. [PMID: 33127468 DOI: 10.1016/j.nbd.2020.105151] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
A history of mild traumatic brain injury (mTBI) is linked to a number of chronic neurological conditions, however there is still much unknown about the underlying mechanisms. To provide new insights, this study used a clinically relevant model of repeated mTBI in rats to characterize the acute and chronic neuropathological and neurobehavioral consequences of these injuries. Rats were given four sham-injuries or four mTBIs and allocated to 7-day or 3.5-months post-injury recovery groups. Behavioral analysis assessed sensorimotor function, locomotion, anxiety, and spatial memory. Neuropathological analysis included serum quantification of neurofilament light (NfL), mass spectrometry of the hippocampal proteome, and ex vivo magnetic resonance imaging (MRI). Repeated mTBI rats had evidence of acute cognitive deficits and prolonged sensorimotor impairments. Serum NfL was elevated at 7 days post injury, with levels correlating with sensorimotor deficits; however, no NfL differences were observed at 3.5 months. Several hippocampal proteins were altered by repeated mTBI, including those associated with energy metabolism, neuroinflammation, and impaired neurogenic capacity. Diffusion MRI analysis at 3.5 months found widespread reductions in white matter integrity. Taken together, these findings provide novel insights into the nature and progression of repeated mTBI neuropathology that may underlie lingering or chronic neurobehavioral deficits.
Collapse
Affiliation(s)
- Louise Pham
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jesse Bain
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Anup D Shah
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Monash Bioinformatics Platform, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|