1
|
Xu Q, Liu D, Zhu LQ, Su Y, Huang HZ. Long non-coding RNAs as key regulators of neurodegenerative protein aggregation. Alzheimers Dement 2025; 21:e14498. [PMID: 39936251 DOI: 10.1002/alz.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 02/13/2025]
Abstract
The characteristic events in neurodegenerative diseases (NDDs) encompass protein misfolding, aggregation, accumulation, and their related cellular dysfunction, synaptic function loss. While distinct proteins are implicated in the pathological processes of different NDDs, the process of protein misfolding and aggregation remains notably similar across various conditions. Specifically, proteins undergo misfolding into beta-folded (β-folded) conformation, resulting in the formation of insoluble amyloid proteins. Despite advancements in comprehending protein aggregation, certain facets of this intricate process remain incompletely elucidated. In recent years, the concept that long non-coding RNAs (lncRNAs) contribute to protein aggregation has gained recognition. LncRNAs influence the formation of protein aggregates by facilitating protein overexpression through the regulation of gene transcription and translation, inhibiting protein degradation via lysosomal and autophagic pathways, and targeting aberrant modifications and phase transitions of proteins. A better understanding of the relationship between lncRNAs and aberrant protein aggregation is an important step in dissecting the underlying molecular mechanisms and will contribute to the discovery of new therapeutic targets and strategies. HIGHLIGHTS: NDDs are marked by protein misfolding, aggregation, and accumulation, leading to cellular dysfunction and loss of synaptic function. Despite different proteins being involved in various NDDs, the process of misfolding into β-folded conformations and forming insoluble amyloid proteins is consistent across conditions. The role of lncRNAs in protein aggregation has gained attention, as they regulate gene transcription and translation, inhibit protein degradation, and target aberrant protein modifications. Understanding the link between lncRNAs and protein aggregation is crucial for uncovering molecular mechanisms and developing new therapeutic targets.
Collapse
Affiliation(s)
- Qi Xu
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Su
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - He-Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Anesthesiology Department, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Sun Y, Zhang X, Wu Z, Li W, Kim WJ. Genetic screening reveals cone cell-specific factors as common genetic targets modulating rival-induced prolonged mating in male Drosophila melanogaster. G3 (BETHESDA, MD.) 2025; 15:jkae255. [PMID: 39489492 PMCID: PMC11708226 DOI: 10.1093/g3journal/jkae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Male-male social interactions exert a substantial impact on the transcriptional regulation of genes associated with aggression and mating behavior in male Drosophila melanogaster. Throughout our comprehensive genetic screening of aggression-related genes, we identified that the majority of mutants for these genes are associated with rival-induced and visually oriented mating behavior, longer-mating duration (LMD). The majority of mutants with upregulated genes in single-housed males significantly altered LMD behavior but not copulation latency, suggesting a primary regulation of mating duration. Single-cell RNA-sequencing revealed that LMD-related genes are predominantly co-expressed with male-specific genes like dsx and Cyp6a20 in specific cell populations, especially in cone cells. Functional validation confirmed the roles of these genes in mediating LMD. Expression of LMD genes like Cyp6a20, Cyp4d21, and CrzR was enriched in cone cells, with disruptions in cone cell-specific expression of CrzR and Cyp4d21 leading to disrupted LMD. We also identified a novel gene, CG10026/Macewindu, that reversed LMD when overexpressed in cone cells. These findings underscore the critical role of cone cells as a pivotal site for the expression of genes involved in the regulation of LMD behavior. This study provides valuable insights into the intricate mechanisms underlying complex sexual behaviors in Drosophila.
Collapse
Affiliation(s)
- Yanying Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Xiaoli Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Zekun Wu
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Wenjing Li
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
- Medical and Health Research Institute, Zhengzhou Research Institute of HIT, Zhengzhou, Henan 450000, China
| |
Collapse
|
3
|
Yuan Y, Yu L, Zhuang X, Wen D, He J, Hong J, Xie J, Ling S, Du X, Chen W, Wang X. Drosophila models used to simulate human ATP1A1 gene mutations that cause Charcot-Marie-Tooth type 2 disease and refractory seizures. Neural Regen Res 2025; 20:265-276. [PMID: 38767491 PMCID: PMC11246156 DOI: 10.4103/1673-5374.391302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00034/figure1/v/2024-05-14T021156Z/r/image-tiff Certain amino acids changes in the human Na+/K+-ATPase pump, ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1), cause Charcot-Marie-Tooth disease type 2 (CMT2) disease and refractory seizures. To develop in vivo models to study the role of Na+/K+-ATPase in these diseases, we modified the Drosophila gene homolog, Atpα, to mimic the human ATP1A1 gene mutations that cause CMT2. Mutations located within the helical linker region of human ATP1A1 (I592T, A597T, P600T, and D601F) were simultaneously introduced into endogenous DrosophilaAtpα by CRISPR/Cas9-mediated genome editing, generating the AtpαTTTF model. In addition, the same strategy was used to generate the corresponding single point mutations in flies (AtpαI571T, AtpαA576T, AtpαP579T, and AtpαD580F). Moreover, a deletion mutation (Atpαmut) that causes premature termination of translation was generated as a positive control. Of these alleles, we found two that could be maintained as homozygotes (AtpαI571T and AtpαP579T). Three alleles (AtpαA576T, AtpαP579 and AtpαD580F) can form heterozygotes with the Atpαmut allele. We found that the Atpα allele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila. Flies heterozygous for AtpαTTTF mutations have motor performance defects, a reduced lifespan, seizures, and an abnormal neuronal morphology. These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.
Collapse
Affiliation(s)
- Yao Yuan
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Lingqi Yu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xudong Zhuang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian Province, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Dongjing Wen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Jin He
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jingmei Hong
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jiayu Xie
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Shengan Ling
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xiaoyue Du
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xinrui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian Province, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
4
|
Dayal Aggarwal D, Mishra P, Yadav G, Mitra S, Patel Y, Singh M, Sahu RK, Sharma V. Decoding the connection between lncRNA and obesity: Perspective from humans and Drosophila. Heliyon 2024; 10:e35327. [PMID: 39166041 PMCID: PMC11334870 DOI: 10.1016/j.heliyon.2024.e35327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Background Obesity is a burgeoning global health problem with an escalating prevalence and severe implications for public health. New evidence indicates that long non-coding RNAs (lncRNAs) may play a pivotal role in regulating adipose tissue function and energy homeostasis across various species. However, the molecular mechanisms underlying obesity remain elusive. Scope of review This review discusses obesity and fat metabolism in general, highlighting the emerging importance of lncRNAs in modulating adipogenesis. It describes the regulatory networks, latest tools, techniques, and approaches to enhance our understanding of obesity and its lncRNA-mediated epigenetic regulation in humans and Drosophila. Major conclusions This review analyses large datasets of human and Drosophila lncRNAs from published databases and literature with experimental evidence supporting lncRNAs role in fat metabolism. It concludes that lncRNAs play a crucial role in obesity-related metabolism. Cross-species comparisons highlight the relevance of Drosophila findings to human obesity, emphasizing their potential role in adipose tissue biology. Furthermore, it discusses how recent technological advancements and multi-omics data integration enhance our capacity to characterize lncRNAs and their function. Additionally, this review briefly touches upon innovative methodologies like experimental evolution and advanced sequencing technologies for identifying novel genes and lncRNA regulators in Drosophila, which can potentially contribute to obesity research.
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Prachi Mishra
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Gaurav Yadav
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Shrishti Mitra
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Yashvant Patel
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Manvender Singh
- Department of Biotechnology, UIET, MD University, Rohtak, India
| | - Ranjan Kumar Sahu
- Department of Neurology, Houston Methodist Research Insititute, Houston, Tx, USA
| | - Vijendra Sharma
- Department of Biomedical Sciences, University of Windsor, Ontario, Canada
| |
Collapse
|
5
|
Huang Y, Wang T, Jiang C, Li S, Zhou H, Li R. Relish-facilitated lncRNA-CR11538 suppresses Drosophila Imd immune response and maintains immune homeostasis via decoying Relish away from antimicrobial peptide promoters. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105098. [PMID: 37956726 DOI: 10.1016/j.dci.2023.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Innate immunity plays a crucial role in host defense against pathogen invasion and its strength and duration requires precise control. Long non-coding RNAs (lncRNAs) have become important regulators of innate immunity, yet their roles in Drosophila immune responses remain largely unknown. In this study, we identified that the overexpression of lncRNA-CR11538 inhibits the expression of antimicrobial peptides (AMPs) Dpt and AttA in Drosophila upon Escherichia coli (E. coli) infection, and influences the survival rate of flies after E. cloacae infection. Mechanically, lncRNA-CR11538 decoys Relish away from AMPs promoter region. We further revealed that Relish can promote the transcription of lncRNA-CR11538. After analyzing the dynamic expression profile of lncRNA-CR11538 during Imd immune response, we put forward a hypothesis that in the late stage of Imd immune response, lncRNA-CR11538 can be activated by Relish and further decoy Relish away from the AMPs promoter to suppress excessive immune signal and maintain immune homeostasis. This mechanism we proposed provides insights into the complex regulatory networks controlling immune responses in Drosophila and suggests potential targets for therapeutic intervention in diseases involving dysregulated immune responses.
Collapse
Affiliation(s)
- Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Tan Wang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Chun Jiang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China; Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangsu, PR China
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China; Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangsu, PR China.
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, PR China.
| |
Collapse
|
6
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
7
|
Singh AK. Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010017. [PMID: 36675966 PMCID: PMC9865238 DOI: 10.3390/life13010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) have a crucial role in epigenetic, transcriptional and posttranscriptional regulation of gene expression. Many of these regulatory lncRNAs, such as MALAT1, NEAT1, HOTAIR, etc., are associated with different neurodegenerative diseases in humans. The lncRNAs produced by the hsrω gene are known to modulate neurotoxicity in polyQ and amyotrophic lateral sclerosis disease models of Drosophila. Elevated expression of hsrω lncRNAs exaggerates, while their genetic depletion through hsrω-RNAi or in an hsrω-null mutant background suppresses, the disease pathogenicity. This review discusses the possible mechanistic details and implications of the functions of hsrω lncRNAs in the modulation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Interdisciplinary School of Life Sciences, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
8
|
MacPherson RA, Shankar V, Sunkara LT, Hannah RC, Campbell MR, Anholt RRH, Mackay TFC. Pleiotropic fitness effects of the lncRNA Uhg4 in Drosophila melanogaster. BMC Genomics 2022; 23:781. [PMID: 36451091 PMCID: PMC9710044 DOI: 10.1186/s12864-022-08972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are a diverse class of RNAs that are critical for gene regulation, DNA repair, and splicing, and have been implicated in development, stress response, and cancer. However, the functions of many lncRNAs remain unknown. In Drosophila melanogaster, U snoRNA host gene 4 (Uhg4) encodes an antisense long noncoding RNA that is host to seven small nucleolar RNAs (snoRNAs). Uhg4 is expressed ubiquitously during development and in all adult tissues, with maximal expression in ovaries; however, it has no annotated function(s). RESULTS We used CRISPR-Cas9 germline gene editing to generate multiple deletions spanning the promoter region and first exon of Uhg4. Females showed arrested egg development and both males and females were sterile. In addition, Uhg4 deletion mutants showed delayed development and decreased viability, and changes in sleep and responses to stress. Whole-genome RNA sequencing of Uhg4 deletion flies and their controls identified co-regulated genes and genetic interaction networks associated with Uhg4. Gene ontology analyses highlighted a broad spectrum of biological processes, including regulation of transcription and translation, morphogenesis, and stress response. CONCLUSION Uhg4 is a lncRNA essential for reproduction with pleiotropic effects on multiple fitness traits.
Collapse
Affiliation(s)
- Rebecca A MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Lakshmi T Sunkara
- Present adress: Clemson Veterinary Diagnostic Center, Livestock Poultry Health, Clemson University, 500 Clemson Road, Columbia, SC, 29229, USA
| | - Rachel C Hannah
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Marion R Campbell
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Robert R H Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| | - Trudy F C Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| |
Collapse
|
9
|
Zhou H, Wu S, Liu L, Li R, Jin P, Li S. Drosophila Relish Activating lncRNA-CR33942 Transcription Facilitates Antimicrobial Peptide Expression in Imd Innate Immune Response. Front Immunol 2022; 13:905899. [PMID: 35720331 PMCID: PMC9201911 DOI: 10.3389/fimmu.2022.905899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are an emerging class of regulators that play crucial roles in regulating the strength and duration of innate immunity. However, little is known about the regulation of Drosophila innate immunity-related lncRNAs. In this study, we first revealed that overexpression of lncRNA-CR33942 could strengthen the expression of the Imd pathway antimicrobial peptide (AMP) genes Diptericin (Dpt) and Attacin-A (AttA) after infection, and vice versa. Secondly, RNA-seq analysis of lncRNA-CR33942-overexpressing flies post Gram-negative bacteria infection confirmed that lncRNA-CR33942 positively regulated the Drosophila immune deficiency (Imd) pathway. Mechanistically, we found that lncRNA-CR33942 interacts and enhances the binding of NF-κB transcription factor Relish to Dpt and AttA promoters, thereby facilitating Dpt and AttA expression. Relish could also directly promote lncRNA-CR33942 transcription by binding to its promoter. Finally, rescue experiments and dynamic expression profiling post-infection demonstrated the vital role of the Relish/lncRNA-CR33942/AMP regulatory axis in enhancing Imd pathway and maintaining immune homeostasis. Our study elucidates novel mechanistic insights into the role of lncRNA-CR33942 in activating Drosophila Imd pathway and the complex regulatory interaction during the innate immune response of animals.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shengjie Li
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
10
|
Zhou H, Li S, Pan W, Wu S, Ma F, Jin P. Interaction of lncRNA-CR33942 with Dif/Dorsal Facilitates Antimicrobial Peptide Transcriptions and Enhances Drosophila Toll Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1978-1988. [PMID: 35379744 DOI: 10.4049/jimmunol.2100658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
The Drosophila Toll signaling pathway mainly responds to Gram-positive (G+) bacteria or fungal infection, which is highly conserved with mammalian TLR signaling pathway. Although many positive and negative regulators involved in the immune response of the Toll pathway have been identified in Drosophila, the roles of long noncoding RNAs (lncRNAs) in Drosophila Toll immune responses are poorly understood to date. In this study, our results demonstrate that lncRNA-CR33942 is mainly expressed in the nucleus and upregulated after Micrococcus luteus infection. Especially, lncRNA-CR33942 not only modulates differential expressions of multiple antimicrobial peptide genes but also affects the Drosophila survival rate during response to G+ bacterial infection based on the transiently overexpressing and the knockdown lncRNA-CR33942 assays in vivo. Mechanically, lncRNA-CR33942 interacts with the NF-κB transcription factors Dorsal-related immunity factor/Dorsal to promote the transcriptions of antimicrobial peptides drosomycin and metchnikowin, thus enhancing Drosophila Toll immune responses. Taken together, this study identifies lncRNA-CR33942 as a positive regulator of Drosophila innate immune response to G+ bacterial infection to facilitate Toll signaling via interacting with Dorsal-related immunity factor/Dorsal. It would be helpful to reveal the roles of lncRNAs in Toll immune response in Drosophila and provide insights into animal innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and.,Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
| | - Wanwan Pan
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| |
Collapse
|
11
|
Zhou H, Ni J, Wu S, Ma F, Jin P, Li S. lncRNA-CR46018 positively regulates the Drosophila Toll immune response by interacting with Dif/Dorsal. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104183. [PMID: 34174242 DOI: 10.1016/j.dci.2021.104183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The Toll signaling pathway is highly conserved from insects to mammals. Drosophila is a model species that is commonly used to study innate immunity. Although many studies have assessed protein-coding genes that regulate the Toll pathway, it is unclear whether long noncoding RNAs (lncRNAs) play regulatory roles in the Toll pathway. Here, we evaluated the expression of the lncRNA CR46018 in Drosophila. Our results showed that this lncRNA was significantly overexpressed after infection of Drosophila with Micrococcus luteus. A CR46018-overexpressing Drosophila strain was then constructed; we expected that CR46018 overexpression would enhance the expression of various antimicrobial peptides downstream of the Toll pathway, regardless of infection with M. luteus. RNA-seq analysis of CR46018-overexpressing Drosophila after infection with M. luteus showed that upregulated genes were mainly enriched in Toll and Imd signaling pathways. Moreover, bioinformatics predictions and RNA-immunoprecipitation experiments showed that CR46018 interacted with the transcription factors Dif and Dorsal to enhance the Toll pathway. During gram-positive bacterial infection, flies overexpressing CR46018 showed favorable survival compared with flies in the control group. Overall, our current work not only reveals a new immune regulatory factor, lncRNA-CR46018, and explores its potential regulatory model, but also provides a new perspective for the effect of immune disorders on the survival of Drosophila melanogaster.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Jiajia Ni
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Shengjie Li
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China.
| |
Collapse
|
12
|
The function of Scox in glial cells is essential for locomotive ability in Drosophila. Sci Rep 2021; 11:21207. [PMID: 34707123 PMCID: PMC8551190 DOI: 10.1038/s41598-021-00663-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
Synthesis of cytochrome c oxidase (Scox) is a Drosophila homolog of human SCO2 encoding a metallochaperone that transports copper to cytochrome c, and is an essential protein for the assembly of cytochrome c oxidase in the mitochondrial respiratory chain complex. SCO2 is highly conserved in a wide variety of species across prokaryotes and eukaryotes, and mutations in SCO2 are known to cause mitochondrial diseases such as fatal infantile cardioencephalomyopathy, Leigh syndrome, and Charcot-Marie-Tooth disease, a neurodegenerative disorder. These diseases have a common symptom of locomotive dysfunction. However, the mechanisms of their pathogenesis remain unknown, and no fundamental medications or therapies have been established for these diseases. In this study, we demonstrated that the glial cell-specific knockdown of Scox perturbs the mitochondrial morphology and function, and locomotive behavior in Drosophila. In addition, the morphology and function of synapses were impaired in the glial cell-specific Scox knockdown. Furthermore, Scox knockdown in ensheathing glia, one type of glial cell in Drosophila, resulted in larval and adult locomotive dysfunction. This study suggests that the impairment of Scox in glial cells in the Drosophila CNS mimics the pathological phenotypes observed by mutations in the SCO2 gene in humans.
Collapse
|
13
|
Yang L, Wang YW, Lu YY, Li B, Chen KP, Li CJ. Genome-wide identification and characterization of long non-coding RNAs in Tribolium castaneum. INSECT SCIENCE 2021; 28:1262-1276. [PMID: 32978885 DOI: 10.1111/1744-7917.12867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Long non-coding RNAs (lncRNAs) are poorly understood in insects. In this study, we performed genome-wide analysis of lncRNAs in Tribolium castaneum by RNA-seq. In total, 4516 lncRNA transcripts corresponding to 3917 genes were identified from late embryos, early larvae, late larvae, early pupae, late pupae and early adults of T. castaneum, including 3152 novel lncRNAs and 1364 known lncRNAs. These lncRNAs have few exons and transcripts, and are short in length. During development, they exhibited nine different expression patterns. Functionally, they can act either by targeting messenger RNAs (1813 lncRNAs) and lncRNAs (45 lncRNAs) or as micro RNA (miRNA) precursors (46 lncRNAs). LncRNAs were observed to target the metabolic enzymes of glycolysis, TCA cycle and amino acids, demonstrating that lncRNAs control metabolism by regulating metabolic enzymes. Moreover, lncRNAs were shown to participate in cell differentiation and development via their targets. As miRNA precursors, lncRNAs could participate in the ecdysone signaling pathway. This study provides comprehensive information for lncRNAs of T. castaneum, and will promote functional analysis and target identification of lncRNAs in the insect.
Collapse
Affiliation(s)
- Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - You-Wei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yao-Yao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Cheng-Jun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
14
|
Zhou H, Li S, Wu S, Jin P, Ma F. LncRNA-CR11538 Decoys Dif/Dorsal to Reduce Antimicrobial Peptide Products for Restoring Drosophila Toll Immunity Homeostasis. Int J Mol Sci 2021; 22:ijms221810117. [PMID: 34576280 PMCID: PMC8468853 DOI: 10.3390/ijms221810117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Avoiding excessive or insufficient immune responses and maintaining homeostasis are critical for animal survival. Although many positive or negative modulators involved in immune responses have been identified, little has been reported to date concerning whether the long non-coding RNA (lncRNA) can regulate Drosophila immunity response. In this study, we firstly discover that the overexpression of lncRNA-CR11538 can inhibit the expressions of antimicrobial peptides Drosomycin (Drs) and Metchnikowin (Mtk) in vivo, thereby suppressing the Toll signaling pathway. Secondly, our results demonstrate that lncRNA-CR11538 can interact with transcription factors Dif/Dorsal in the nucleus based on both subcellular localization and RIP analyses. Thirdly, our findings reveal that lncRNA-CR11538 can decoy Dif/Dorsal away from the promoters of Drs and Mtk to repress their transcriptions by ChIP-qPCR and dual luciferase report experiments. Fourthly, the dynamic expression changes of Drs, Dif, Dorsal and lncRNA-CR11538 in wild-type flies (w1118) at different time points after M. luteus stimulation disclose that lncRNA-CR11538 can help Drosophila restore immune homeostasis in the later period of immune response. Overall, our study reveals a novel mechanism by which lncRNA-CR11538 serves as a Dif/Dorsal decoy to downregulate antimicrobial peptide expressions for restoring Drosophila Toll immunity homeostasis, and provides a new insight into further studying the complex regulatory mechanism of animal innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
- Correspondence: ; Tel.: +86-25-85891050
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| |
Collapse
|
15
|
Aliperti V, Skonieczna J, Cerase A. Long Non-Coding RNA (lncRNA) Roles in Cell Biology, Neurodevelopment and Neurological Disorders. Noncoding RNA 2021; 7:36. [PMID: 34204536 PMCID: PMC8293397 DOI: 10.3390/ncrna7020036] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Development is a complex process regulated both by genetic and epigenetic and environmental clues. Recently, long non-coding RNAs (lncRNAs) have emerged as key regulators of gene expression in several tissues including the brain. Altered expression of lncRNAs has been linked to several neurodegenerative, neurodevelopmental and mental disorders. The identification and characterization of lncRNAs that are deregulated or mutated in neurodevelopmental and mental health diseases are fundamental to understanding the complex transcriptional processes in brain function. Crucially, lncRNAs can be exploited as a novel target for treating neurological disorders. In our review, we first summarize the recent advances in our understanding of lncRNA functions in the context of cell biology and then discussing their association with selected neuronal development and neurological disorders.
Collapse
Affiliation(s)
- Vincenza Aliperti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Justyna Skonieczna
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Andrea Cerase
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| |
Collapse
|
16
|
Muraoka Y, Nikaido A, Kowada R, Kimura H, Yamaguchi M, Yoshida H. Identification of Rpd3 as a novel epigenetic regulator of Drosophila FIG 4, a Charcot-Marie-Tooth disease-causing gene. Neuroreport 2021; 32:562-568. [PMID: 33850086 DOI: 10.1097/wnr.0000000000001636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutations in the factor-induced-gene 4 (FIG 4) gene are associated with multiple disorders, including Charcot-Marie-Tooth disease (CMT), epilepsy with polymicrogyria, Yunis-Varón syndrome and amyotrophic lateral sclerosis. The wide spectrum of disorders associated with FIG 4 may be related to the dysregulated epigenetics. Using Gene Expression Omnibus, we found that HDAC1 binds to the FIG 4 gene locus in the genome of human CD4+ T cells. Rpd3 is a well-known Drosophila homolog of human HDAC1. We previously established Drosophila models targeting Drosophila FIG 4 (dFIG 4) that exhibited defective locomotive ability, abnormal synapse morphology at neuromuscular junctions, enlarged vacuoles in the fat body and aberrant compound eye morphology. Genetic crossing experiments followed by physiological and immunocytochemical analyses revealed that Rpd3 mutations suppressed these defects induced by dFIG 4 knockdown. This demonstrated Rpd3 to be an important epigenetic regulator of dFIG 4, suggesting that the inhibition of HDAC1 represses the pathogenesis of FIG 4-associated disorders, including CMT. Defects in epigenetic regulators, such as HDAC1, may also explain the diverse symptoms of FIG 4-associated disorders.
Collapse
Affiliation(s)
- Yuuka Muraoka
- Department of Applied Biology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
| | - Atsushi Nikaido
- Department of Applied Biology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
| | - Ryosuke Kowada
- Department of Applied Biology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama
| | - Masamitsu Yamaguchi
- Department of Applied Biology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Kyoto, Japan
| | - Hideki Yoshida
- Department of Applied Biology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
| |
Collapse
|
17
|
Choudhary C, Sharma S, Meghwanshi KK, Patel S, Mehta P, Shukla N, Do DN, Rajpurohit S, Suravajhala P, Shukla JN. Long Non-Coding RNAs in Insects. Animals (Basel) 2021; 11:1118. [PMID: 33919662 PMCID: PMC8069800 DOI: 10.3390/ani11041118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Only a small subset of all the transcribed RNAs are used as a template for protein translation, whereas RNA molecules that are not translated play a very important role as regulatory non-coding RNAs (ncRNAs). Besides traditionally known RNAs (ribosomal and transfer RNAs), ncRNAs also include small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs). The lncRNAs, which were initially thought to be junk, have gained a great deal attention because of their regulatory roles in diverse biological processes in animals and plants. Insects are the most abundant and diverse group of animals on this planet. Recent studies have demonstrated the role of lncRNAs in almost all aspects of insect development, reproduction, and genetic plasticity. In this review, we describe the function and molecular mechanisms of the mode of action of different insect lncRNAs discovered up to date.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| | - Shivasmi Sharma
- Department of Biotechnology, Amity University Jaipur, Jaipur 303002, India; (S.S.); (S.P.)
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| | - Smit Patel
- Department of Biotechnology, Amity University Jaipur, Jaipur 303002, India; (S.S.); (S.P.)
| | - Prachi Mehta
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India; (P.M.); (S.R.)
| | - Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, India;
| | - Duy Ngoc Do
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Subhash Rajpurohit
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India; (P.M.); (S.R.)
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, India;
- Bioclues.org, Vivekananda Nagar, Kukatpally, Hyderabad, Telangana 500072, India
| | - Jayendra Nath Shukla
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| |
Collapse
|
18
|
Yamaguchi M, Lee IS, Jantrapirom S, Suda K, Yoshida H. Drosophila models to study causative genes for human rare intractable neurological diseases. Exp Cell Res 2021; 403:112584. [PMID: 33812867 DOI: 10.1016/j.yexcr.2021.112584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Drosophila is emerging as a convenient model for investigating human diseases. Functional homologues of almost 75% of human disease-related genes are found in Drosophila. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that causes defects in motoneurons. Charcot-Marie-Tooth disease (CMT) is one of the most commonly found inherited neuropathies affecting both motor and sensory neurons. No effective therapy has been established for either of these diseases. In this review, after overviewing ALS, Drosophila models targeting several ALS-causing genes, including TDP-43, FUS and Ubiquilin2, are described with their genetic interactants. Then, after overviewing CMT, examples of Drosophila models targeting several CMT-causing genes, including mitochondria-related genes and FIG 4, are also described with their genetic interactants. In addition, we introduce Sotos syndrome caused by mutations in the epigenetic regulator gene NSD1. Lastly, several genes and pathways that commonly interact with ALS- and/or CMT-causing genes are described. In the case of ALS and CMT that have many causative genes, it may be not practical to perform gene therapy for each of the many disease-causing genes. The possible uses of the common genes and pathways as novel diagnosis markers and effective therapeutic targets are discussed.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto, 619-0237, Japan
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
19
|
Yamaguchi M, Omori K, Asada S, Yoshida H. Epigenetic Regulation of ALS and CMT: A Lesson from Drosophila Models. Int J Mol Sci 2021; 22:ijms22020491. [PMID: 33419039 PMCID: PMC7825332 DOI: 10.3390/ijms22020491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common neurodegenerative disorder and is sometimes associated with frontotemporal dementia. Charcot–Marie–Tooth disease (CMT) is one of the most commonly inherited peripheral neuropathies causing the slow progression of sensory and distal muscle defects. Of note, the severity and progression of CMT symptoms markedly vary. The phenotypic heterogeneity of ALS and CMT suggests the existence of modifiers that determine disease characteristics. Epigenetic regulation of biological functions via gene expression without alterations in the DNA sequence may be an important factor. The methylation of DNA, noncoding RNA, and post-translational modification of histones are the major epigenetic mechanisms. Currently, Drosophila is emerging as a useful ALS and CMT model. In this review, we summarize recent studies linking ALS and CMT to epigenetic regulation with a strong emphasis on approaches using Drosophila models.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto 619-0237, Japan
- Correspondence: (M.Y.); (H.Y.)
| | - Kentaro Omori
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Satoshi Asada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Correspondence: (M.Y.); (H.Y.)
| |
Collapse
|
20
|
Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease. Int J Mol Sci 2020; 21:ijms21197419. [PMID: 33049996 PMCID: PMC7582988 DOI: 10.3390/ijms21197419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited peripheral neuropathies. CMT patients typically show slowly progressive muscle weakness and sensory loss in a distal dominant pattern in childhood. The diagnosis of CMT is based on clinical symptoms, electrophysiological examinations, and genetic testing. Advances in genetic testing technology have revealed the genetic heterogeneity of CMT; more than 100 genes containing the disease causative mutations have been identified. Because a single genetic alteration in CMT leads to progressive neurodegeneration, studies of CMT patients and their respective models revealed the genotype-phenotype relationships of targeted genes. Conventionally, rodents and cell lines have often been used to study the pathogenesis of CMT. Recently, Drosophila has also attracted attention as a CMT model. In this review, we outline the clinical characteristics of CMT, describe the advantages and disadvantages of using Drosophila in CMT studies, and introduce recent advances in CMT research that successfully applied the use of Drosophila, in areas such as molecules associated with mitochondria, endosomes/lysosomes, transfer RNA, axonal transport, and glucose metabolism.
Collapse
|
21
|
Shimizu J, Kasai T, Yoshida H, Huynh AM, Nakao-Azuma Y, Shinomoto M, Tokuda T, Mizuno T, Yamaguchi M. Novel Drosophila model for parkinsonism by targeting phosphoglycerate kinase. Neurochem Int 2020; 139:104816. [PMID: 32758590 DOI: 10.1016/j.neuint.2020.104816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022]
Abstract
Patients with Parkinson's disease (PD) show a common progressive neurodegenerative movement disorder characterized by rigidity, tremors, postural instability, and bradykinesia due to the loss of dopaminergic neurons in the substantia nigra, and is often accompanied by several non-motor symptoms, called parkinsonism. Several lines of recent evidence support the hypothesis that mutations in the gene encoding phosphoglycerate kinase (PGK) play an important role in the PD mechanism. PGK is a key enzyme in the glycolytic pathway that catalyzes the reaction from 1,3-diphosphoglycerate to 3-phosphoglycerate. We herein established a parkinsonism model targeting Drosophila Pgk. Dopaminergic (DA) neuron-specific Pgk knockdown lead to locomotive defects in both young and aged adult flies and was accompanied by progressive DA neuron loss with aging. Pgk knockdown in DA neurons decreased dopamine levels in the central nervous system (CNS) of both young and aged adult flies. These phenotypes are similar to the defects observed in human PD patients, suggesting that the Pgk knockdown flies established herein are a promising model for parkinsonism. Furthermore, pan-neuron-specific Pgk knockdown induced low ATP levels and the accumulation of reactive oxygen species (ROS) in the CNS of third instar larvae. Collectively, these results indicate that a failure in the energy production system of Pgk knockdown flies causes locomotive defects accompanied by neuronal dysfunction and degeneration in DA neurons.
Collapse
Affiliation(s)
- Joe Shimizu
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takashi Kasai
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan.
| | - Hideki Yoshida
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Anh M Huynh
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yumiko Nakao-Azuma
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan; Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Makiko Shinomoto
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan; Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
22
|
Bean DM, Al-Chalabi A, Dobson RJB, Iacoangeli A. A Knowledge-Based Machine Learning Approach to Gene Prioritisation in Amyotrophic Lateral Sclerosis. Genes (Basel) 2020; 11:E668. [PMID: 32575372 PMCID: PMC7349022 DOI: 10.3390/genes11060668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease of the upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two to five years of first symptoms. Several rare disruptive gene variants have been associated with ALS and are responsible for about 15% of all cases. Although our knowledge of the genetic landscape of this disease is improving, it remains limited. Machine learning models trained on the available protein-protein interaction and phenotype-genotype association data can use our current knowledge of the disease genetics for the prediction of novel candidate genes. Here, we describe a knowledge-based machine learning method for this purpose. We trained our model on protein-protein interaction data from IntAct, gene function annotation from Gene Ontology, and known disease-gene associations from DisGeNet. Using several sets of known ALS genes from public databases and a manual review as input, we generated a list of new candidate genes for each input set. We investigated the relevance of the predicted genes in ALS by using the available summary statistics from the largest ALS genome-wide association study and by performing functional and phenotype enrichment analysis. The predicted sets were enriched for genes associated with other neurodegenerative diseases known to overlap with ALS genetically and phenotypically, as well as for biological processes associated with the disease. Moreover, using ALS genes from ClinVar and our manual review as input, the predicted sets were enriched for ALS-associated genes (ClinVar p = 0.038 and manual review p = 0.060) when used for gene prioritisation in a genome-wide association study.
Collapse
Affiliation(s)
- Daniel M. Bean
- Department of Biostatistics & Health Informatics, King′s College London, 16 De Crespigny Park, London SE5 8AF, UK;
- Health Data Research UK London, University College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Ammar Al-Chalabi
- King′s College Hospital, Bessemer Road, Denmark Hill, Brixton, London SE5 9RS, UK;
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King′s College London, London, 5 Cutcombe Rd, Brixton, London SE5 9RT, UK
| | - Richard J. B. Dobson
- Department of Biostatistics & Health Informatics, King′s College London, 16 De Crespigny Park, London SE5 8AF, UK;
- Health Data Research UK London, University College London, 16 De Crespigny Park, London SE5 8AF, UK
- Institute of Health Informatics, University College London, 222 Euston Rd, London NW1 2DA, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics & Health Informatics, King′s College London, 16 De Crespigny Park, London SE5 8AF, UK;
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King′s College London, London, 5 Cutcombe Rd, Brixton, London SE5 9RT, UK
| |
Collapse
|
23
|
Ali MS, Suda K, Kowada R, Ueoka I, Yoshida H, Yamaguchi M. Neuron-specific knockdown of solute carrier protein SLC25A46a induces locomotive defects, an abnormal neuron terminal morphology, learning disability, and shortened lifespan. IBRO Rep 2020; 8:65-75. [PMID: 32140609 PMCID: PMC7047145 DOI: 10.1016/j.ibror.2020.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 01/21/2023] Open
Abstract
Various mutations in the SLC25A46 gene have been reported in mitochondrial diseases that are sometimes classified as type 2 Charcot-Marie-Tooth disease, optic atrophy, and Leigh syndrome. Although human SLC25A46 is a well-known transporter that acts through the mitochondrial outer membrane, the relationship between neurodegeneration in these diseases and the loss-of-function of SLC25A46 remains unclear. Two Drosophila genes, CG8931 (dSLC25A46a) and CG5755 (dSLC25A46b) have been identified as candidate homologs of human SLC25A46. We previously characterized the phenotypes of pan-neuron-specific dSLC25A46b knockdown flies. In the present study, we developed pan-neuron-specific dSLC25A46a knockdown flies and examined their phenotypes. Neuron-specific dSLC25A46a knockdown resulted in reduced mobility in larvae as well as adults. An aberrant morphology for neuromuscular junctions (NMJs), such as a reduced synaptic branch length and decreased number and size of boutons, was observed in dSLC25A46a knockdown flies. Learning ability was also reduced in the larvae of knockdown flies. In dSLC25A46a knockdown flies, mitochondrial hyperfusion was detected in NMJ synapses together with the accumulation of reactive oxygen species and reductions in ATP. These phenotypes were very similar to those of dSLC25A46b knockdown flies, suggesting that dSLC25A46a and dSLC25A46b do not have redundant roles in neurons. Collectively, these results show that the depletion of SLC25A46a leads to mitochondrial defects followed by an aberrant synaptic morphology, resulting in locomotive defects and learning disability. Thus, the dSLC25A46a knockdown fly summarizes most of the phenotypes in patients with mitochondrial diseases, offering a useful tool for studying these diseases.
Collapse
Affiliation(s)
- Md Saheb Ali
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- Faculty of Agriculture, Bangladesh Jute Research Institute, Manik Mia Ave., Dhaka, 1207, Bangladesh
| | - Kojiro Suda
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ryosuke Kowada
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ibuki Ueoka
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
24
|
Chen KW, Chen JA. Functional Roles of Long Non-coding RNAs in Motor Neuron Development and Disease. J Biomed Sci 2020; 27:38. [PMID: 32093746 PMCID: PMC7041250 DOI: 10.1186/s12929-020-00628-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained increasing attention as they exhibit highly tissue- and cell-type specific expression patterns. LncRNAs are highly expressed in the central nervous system and their roles in the brain have been studied intensively in recent years, but their roles in the spinal motor neurons (MNs) are largely unexplored. Spinal MN development is controlled by precise expression of a gene regulatory network mediated spatiotemporally by transcription factors, representing an elegant paradigm for deciphering the roles of lncRNAs during development. Moreover, many MN-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are associated with RNA metabolism, yet the link between MN-related diseases and lncRNAs remains obscure. In this review, we summarize lncRNAs known to be involved in MN development and disease, and discuss their potential future therapeutic applications.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
25
|
Identification of CR43467 encoding a long non-coding RNA as a novel genetic interactant with dFIG4, a CMT-causing gene. Exp Cell Res 2019; 386:111711. [PMID: 31704059 DOI: 10.1016/j.yexcr.2019.111711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
The eye imaginal disc-specific knockdown of dFIG4, a Drosophila homolog of FIG4 that is one of the Charcot-Marie-Tooth disease (CMT)-causing genes, induces an aberrant adult compound eye morphology, the so-called rough eye phenotype. We previously performed modifier screening on the dFIG4 knockdown-induced rough eye phenotype and identified several genes, including CR18854, encoding a long non-coding RNA (lncRNA) as genetic interactants with dFIG4. In the present study, in more extensive genetic screening, we found that the deletion of a gene locus encoding both Odorant rector 46a (Or46a) and lncRNA CR43467 effectively suppressed the rough eye phenotype induced by the knockdown of dFIG4. Both genes were located on the same locus, but oriented in opposite directions. In order to identify which of these genes is responsible for the suppression of the rough eye phenotype, we established a CR43467-specific knockdown line using the CRISPR-dCas9 system. By using this system, we demonstrated that the CR43467 gene, but not the Or46a gene, genetically interacted with the dFIG4 gene. The knockdown of CR43467 rescued the reductions in the length of synaptic branches and number of boutons at neuromuscular junctions induced by the knockdown of dFIG4. The vacuole enlargement phenotype induced by the fat body-specific dFIG4 knockdown was also effectively suppressed by the knockdown of CR43467. The knockdown of CR43467 also suppressed the rough eye phenotype induced by other peripheral neuropathy-related genes, such as dCOA7, dHADHB, and dPDHB. We herein identified another gene encoding lncRNA, CR43467 as a genetic interactant with the CMT-causing gene.
Collapse
|
26
|
Suda K, Muraoka Y, Ortega-Yáñez A, Yoshida H, Kizu F, Hochin T, Kimura H, Yamaguchi M. Reduction of Rpd3 suppresses defects in locomotive ability and neuronal morphology induced by the knockdown of Drosophila SLC25A46 via an epigenetic pathway. Exp Cell Res 2019; 385:111673. [PMID: 31614134 DOI: 10.1016/j.yexcr.2019.111673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction causes various diseases. Mutations in the SLC25A46 gene have been identified in mitochondrial diseases that are sometimes classified as Charcot-Marie-Tooth disease type 2, optic atrophy, and Leigh syndrome. A homolog of SLC25A46 was identified in Drosophila and designated as dSLC25A46 (CG5755). We previously established mitochondrial disease model targeting of dSLC25A46, which causes locomotive dysfunction and morphological defects at neuromuscular junctions, such as reduced synaptic branch lengths and decreased numbers of boutons. The diverse symptoms of mitochondrial diseases carrying mutations in SLC25A46 may be associated with the dysregulation of some epigenetic regulators. To investigate the involvement of epigenetic regulators in mitochondrial diseases, we examined candidate epigenetic regulators that interact with human SLC25A46 by searching Gene Expression Omnibus (GEO). We discovered that HDAC1 binds to several SLC25A46 genomic regions in human cultured CD4 (+) cells, and attempted to prove this in an in vivo Drosophila model. By demonstrating that Rpd3, Drosophila HDAC1, regulates the histone H4K8 acetylation state in dSLC25A46 genomic regions, we confirmed that Rpd3 is a novel epigenetic regulator modifying the phenotypes observed with the mitochondrial disease model targeting of dSLC25A46. The functional reduction of Rpd3 rescued the deficient locomotive ability and aberrant morphology of motoneurons at presynaptic terminals induced by the dSLC25A46 knockdown. The present results suggest that the inhibition of HDAC1 suppresses the pathogenic processes that lead to the degeneration of motoneurons in mitochondrial diseases.
Collapse
Affiliation(s)
- Kojiro Suda
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuuka Muraoka
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Andrea Ortega-Yáñez
- Departamento de Genética del Desarrollo Y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Hideki Yoshida
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Fuma Kizu
- Department of Information Science, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Teruhisa Hochin
- Department of Information Science, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
27
|
Insights into the Functions of LncRNAs in Drosophila. Int J Mol Sci 2019; 20:ijms20184646. [PMID: 31546813 PMCID: PMC6770079 DOI: 10.3390/ijms20184646] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides (nt). LncRNAs have high spatiotemporal specificity, and secondary structures have been preserved throughout evolution. They have been implicated in a range of biological processes and diseases and are emerging as key regulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Comparative analyses of lncRNA functions among multiple organisms have suggested that some of their mechanisms seem to be conserved. Transcriptome studies have found that some Drosophila lncRNAs have highly specific expression patterns in embryos, nerves, and gonads. In vivo studies of lncRNAs have revealed that dysregulated expression of lncRNAs in Drosophila may result in impaired embryo development, impaired neurological and gonadal functions, and poor stress resistance. In this review, we summarize the epigenetic, transcriptional, and post-transcriptional mechanisms of lncRNAs and mainly focus on recent insights into the transcriptome studies and biological functions of lncRNAs in Drosophila.
Collapse
|
28
|
Li J, Suda K, Ueoka I, Tanaka R, Yoshida H, Okada Y, Okamoto Y, Hiramatsu Y, Takashima H, Yamaguchi M. Neuron-specific knockdown of Drosophila HADHB induces a shortened lifespan, deficient locomotive ability, abnormal motor neuron terminal morphology and learning disability. Exp Cell Res 2019; 379:150-158. [DOI: 10.1016/j.yexcr.2019.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 01/03/2023]
|