1
|
Li Y, Sadri Z, Blandin KJ, Narvaiz DA, Aryal UK, Lugo JN, Poolos NP, Brewster AL. Sex-specific proteomic analysis of epileptic brain tissues from Pten knockout mice and human refractory epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645753. [PMID: 40236188 PMCID: PMC11996393 DOI: 10.1101/2025.03.27.645753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Rationale Epilepsy presents significant sex-based disparities in prevalence and manifestation. Epidemiological studies reveal that epilepsy is more prevalent in males, with lesional types being more common, whereas idiopathic generalized epilepsies are more frequently observed in females. These differences stress the importance of considering sex-specific factors in epilepsy diagnosis, treatment, and mechanistic research using preclinical models. To elucidate potential molecular differences that could explain these disparities and inform personalized treatment strategies, we conducted a proteomic analysis of epileptic brain tissues from both an experimental mouse model of genetic epilepsy and humans with drug-resistant epilepsy (DRE). Methods We employed mass spectrometry-based proteomic analysis on brain tissues from DRE patients and the Pten knockout (KO) mouse model of genetic epilepsy with focal cortical dysplasia. Mouse samples included hippocampi from adult wild-type (WT) and Pten KO mice (4-5 per group and sex). Human samples included temporal cortex from 12 DRE adult patients (7 males, 5 females) and 5 non-epileptic (NE) controls (2 males, 3 females). Brain biopsies were collected with patients' informed consent under approved IRB protocols (Indiana University Health Biorepository). Proteomic profiles were analyzed using principal component analysis (PCA) along with volcano plots to identify significant changes in protein expression. The enrichment analysis of differentially expressed proteins was conducted by Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway. Results PCA revealed distinct clustering of brain proteomes between epilepsy and control cases in both human and mice, with 390 proteins showing significant differences in human and 437 proteins in mouse samples. These proteins are primarily associated with ion channels, synaptic processes, and neuronal energy regulation. In the mouse model, males have more pronounced proteomic changes than females, with enrichment in metabolic pathways and VEGF signaling pathway, indicating a more severe vascular permeability impairment in males. In human DRE cases, 118 proteins were significantly changed by comparing epileptic females to males. Pathway analysis revealed changes in metabolic pathways and the HIF-1 signaling pathway, indicating that altered neuronal activity and inflammation may lead to increased oxygen consumption. Conclusion These findings highlight significant differences between epilepsy and control brain samples in both humans and mice. Sex-specific analysis revealed distinct pathway enrichments between females and males, with males exhibiting a broader range of alterations, suggesting more extensive proteomic alterations. This study offers valuable insights into potential underlying mechanisms of epilepsy and underscores the importance of considering sex as a key factor in epilepsy research and therapeutic development.
Collapse
|
2
|
Bogdańska-Chomczyk E, Wojtacha P, Tsai ML, Huang ACW, Kozłowska A. Alterations in Striatal Architecture and Biochemical Markers' Levels During Postnatal Development in the Rat Model of an Attention Deficit/Hyperactivity Disorder (ADHD). Int J Mol Sci 2024; 25:13652. [PMID: 39769412 PMCID: PMC11680085 DOI: 10.3390/ijms252413652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is defined as a neurodevelopmental condition. The precise underlying mechanisms remain incompletely elucidated. A body of research suggests disruptions in both the cellular architecture and neuronal function within the brain regions of individuals with ADHD, coupled with disturbances in the biochemical parameters. This study seeks to evaluate the morphological characteristics with a volume measurement of the striatal regions and a neuron density assessment within the studied areas across different developmental stages in Spontaneously Hypertensive Rats (SHRs) and Wistar Kyoto Rats (WKYs). Furthermore, the investigation aims to scrutinize the levels and activities of specific markers related to immune function, oxidative stress, and metabolism within the striatum of juvenile and maturing SHRs compared to WKYs. The findings reveal that the most pronounced reductions in striatal volume occur during the juvenile stage in SHRs, alongside alterations in neuronal density within these brain regions compared to WKYs. Additionally, SHRs exhibit heightened levels and activities of various markers, including RAC-alpha serine/threonine-protein kinase (AKT-1), glucocorticoid receptor (GCsRβ), malondialdehyde (MDA), sulfhydryl groups (-SH), glucose (G), iron (Fe), lactate dehydrogenase (LDH). alanine transaminase (ALT), and aspartate transaminase (AST). In summary, notable changes in striatal morphology and elevated levels of inflammatory, oxidative, and metabolic markers within the striatum may be linked to the disrupted brain development and maturation observed in ADHD.
Collapse
Affiliation(s)
- Ewelina Bogdańska-Chomczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Paweł Wojtacha
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Meng-Li Tsai
- Department of Biomechatronic Engineering, National Ilan University, Ylan 26047, Taiwan;
| | | | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland;
| |
Collapse
|
3
|
Drake AW, Jerow LG, Ruksenas JV, McCoy C, Danzer SC. Somatostatin interneuron fate-mapping and structure in a Pten knockout model of epilepsy. Front Cell Neurosci 2024; 18:1474613. [PMID: 39497922 PMCID: PMC11532043 DOI: 10.3389/fncel.2024.1474613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
Disruption of inhibitory interneurons is common in the epileptic brain and is hypothesized to play a pivotal role in epileptogenesis. Abrupt disruption and loss of interneurons is well-characterized in status epilepticus models of epilepsy, however, status epilepticus is a relatively rare cause of epilepsy in humans. How interneuron disruption evolves in other forms of epilepsy is less clear. Here, we explored how somatostatin (SST) interneuron disruption evolves in quadruple transgenic Gli1-CreERT2, Ptenfl/fl, SST-FlpO, and frt-eGFP mice. In these animals, epilepsy develops following deletion of the mammalian target of rapamycin (mTOR) negative regulator phosphatase and tensin homolog (Pten) from a subset of dentate granule cells, while downstream Pten-expressing SST neurons are fate-mapped with green fluorescent protein (GFP). The model captures the genetic complexity of human mTORopathies, in which mutations can be restricted to excitatory neuron lineages, implying that interneuron involvement is later developing and secondary. In dentate granule cell (DGC)-Pten knockouts (KOs), the density of fate-mapped SST neurons was reduced in the hippocampus, but their molecular phenotype was unchanged, with similar percentages of GFP+ cells immunoreactive for SST and parvalbumin (PV). Surviving SST neurons in the dentate gyrus had larger somas, and the density of GFP+ processes in the dentate molecular layer was unchanged despite SST cell loss and expansion of the molecular layer, implying compensatory sprouting of surviving cells. The density of Znt3-immunolabeled puncta, a marker of granule cell presynaptic terminals, apposed to GFP+ processes in the hilus was increased, suggesting enhanced granule cell input to SST neurons. Finally, the percentage of GFP+ cells that were FosB positive was significantly increased, implying that surviving SST neurons are more active. Together, findings suggest that somatostatin-expressing interneurons exhibit a combination of pathological (cell loss) and adaptive (growth) responses to hyperexcitability and seizures driven by upstream Pten KO excitatory granule cells.
Collapse
Affiliation(s)
- Austin W. Drake
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lilian G. Jerow
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Justin V. Ruksenas
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Carlie McCoy
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Steve C. Danzer
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
4
|
Kang K, Wu Y, Gan H, Yang B, Xiao H, Wang D, Qiu H, Dong X, Tang H, Zhai X. Pathophysiological mechanisms underlying the development of focal cortical dysplasia and their association with epilepsy: Experimental models as a research approach. Seizure 2024; 121:176-185. [PMID: 39191070 DOI: 10.1016/j.seizure.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Focal cortical dysplasia (FCD) is a structural lesion that is the most common anatomical lesion identified in children, and the second most common in adults with drug-resistant focal-onset epilepsy. These lesions vary in size, location, and histopathological manifestations. FCDs are classified into three subtypes associated with loss-of-function mutations in PI3K/AKT, TSC1/TSC2, RHEB, and DEPDC/NPRL2/NPRL3. During the decades of research into FCD, experimental models have played an irreplaceable role in the research design of studies investigating disease pathogenesis, pathophysiology, and treatment. Further, the establishment of FCD experimental models has moved the field forward by (1) revealing the cellular processes and signaling pathways underlying FCD pathogenesis and (2) varying the methods and materials to study the function of FCD proteins. Currently, FCD experimental models are predominantly murine, with each model providing unique insights into FCD lesions. This review briefly summarizes the pathology and molecular functions of FCD, further comparing the available modeling methods and indexes, as well as the utilization of models, followed by an analysis of the similarities, advantages, and disadvantages between these models and human FCD.
Collapse
Affiliation(s)
- Kaiyi Kang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Yuxin Wu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Hui Gan
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Baohui Yang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China; Department of Neurosurgery, Laboratory of Neurosurgery, Institute of Neurology, Lanzhou University, Lanzhou 730000, China
| | - Han Xiao
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Difei Wang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Hanli Qiu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Xinyu Dong
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Haotian Tang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China.
| |
Collapse
|
5
|
Kumari S, Brewster AL. Exploring Dendritic and Spine Structural Profiles in Epilepsy: Insights From Human Studies and Experimental Animal Models. Epilepsy Curr 2024; 24:40-46. [PMID: 38327540 PMCID: PMC10846509 DOI: 10.1177/15357597231218603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Dendrites are tree-like structures with tiny spines specialized to receive excitatory synaptic transmission. Spino-dendritic plasticity, driven by neural activity, underlies the maintenance of neuronal connections crucial for proper circuit function. Abnormalities in dendritic morphology are frequently seen in epilepsy. However, the exact etiology or functional implications are not yet known. Therefore, to better comprehend the structure-function significance of this dendritic pathology in epilepsy, it is necessary to identify the common spino-dendritic disturbances present in both human and experimental models. Here, we describe the dendritic and spine structural profiles found across human refractory epilepsy as well as in animal models of developmental, acquired, and genetic epilepsies.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, USA
| | - Amy L. Brewster
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
6
|
Zhang HL, Li Y. The Patent Landscape of mTOR and PTEN Targets. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:104-118. [PMID: 37132311 DOI: 10.2174/2772434418666230427164556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND PTEN and mTOR signaling have many roles, including antiinflammatory, immunosuppressant and cancer. OBJECTIVE US patents were retrieved to show the current landscape of the mTOR and PTEN targets. METHODS PTEN and mTOR targets were analyzed by patent analysis. The U.S. granted patents from January 2003 to July 2022 were performed and analyzed. RESULTS The results showed that the mTOR target was more attractive in drug discovery than the PTEN target. Our findings indicated that most large global pharmaceutical companies focused the drug discovery related to the mTOR target. The present study demonstrated that mTOR and PTEN targets showed more applications in biological approaches compared to BRAF and KRAS targets. The chemical structures of the inhibitors of the mTOR target demonstrated some similar features to those of the inhibitors of KRAS targets. CONCLUSION At this stage, the PTEN target may not be an ideal target subjected to new drug discovery. The present study was the first one which demonstrated that the group of O=S=O may play a critical role in the chemical structures of mTOR inhibitors. It was the first time to show that a PTEN target may be suitably subjected to new therapeutic discovery efforts related to biological applications. Our findings provide a recent insight into therapeutic development for mTOR and PTEN targets.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Central International Intellectual Property (Baotou) Co., Ltd, Baotou, China
| | - Yongxia Li
- Central International Intellectual Property (Baotou) Co., Ltd, Baotou, China
| |
Collapse
|
7
|
Gerasimenko A, Baldassari S, Baulac S. mTOR pathway: Insights into an established pathway for brain mosaicism in epilepsy. Neurobiol Dis 2023; 182:106144. [PMID: 37149062 DOI: 10.1016/j.nbd.2023.106144] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is an essential regulator of numerous cellular activities such as metabolism, growth, proliferation, and survival. The mTOR cascade recently emerged as a critical player in the pathogenesis of focal epilepsies and cortical malformations. The 'mTORopathies' comprise a spectrum of cortical malformations that range from whole brain (megalencephaly) and hemispheric (hemimegalencephaly) abnormalities to focal abnormalities, such as focal cortical dysplasia type II (FCDII), which manifest with drug-resistant epilepsies. The spectrum of cortical dysplasia results from somatic brain mutations in the mTOR pathway activators AKT3, MTOR, PIK3CA, and RHEB and from germline and somatic mutations in mTOR pathway repressors, DEPDC5, NPRL2, NPRL3, TSC1 and TSC2. The mTORopathies are characterized by excessive mTOR pathway activation, leading to a broad range of structural and functional impairments. Here, we provide a comprehensive literature review of somatic mTOR-activating mutations linked to epilepsy and cortical malformations in 292 patients and discuss the perspectives of targeted therapeutics for personalized medicine.
Collapse
Affiliation(s)
- Anna Gerasimenko
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; APHP Sorbonne Université, GH Pitié Salpêtrière et Trousseau, Département de Génétique, Centre de référence "déficiences intellectuelles de causes rares", Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
8
|
Dusing M, LaSarge CL, White A, Jerow LG, Gross C, Danzer SC. Neurovascular Development in Pten and Tsc2 Mouse Mutants. eNeuro 2023; 10:ENEURO.0340-22.2023. [PMID: 36759189 PMCID: PMC9953070 DOI: 10.1523/eneuro.0340-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway is linked to more than a dozen neurologic diseases, causing a range of pathologies, including excess neuronal growth, disrupted neuronal migration, cortical dysplasia, epilepsy and autism. The mTOR pathway also regulates angiogenesis. For the present study, therefore, we queried whether loss of Pten or Tsc2, both mTOR negative regulators, alters brain vasculature in three mouse models: one with Pten loss restricted to hippocampal dentate granule cells [DGC-Pten knock-outs (KOs)], a second with widespread Pten loss from excitatory forebrain neurons (FB-Pten KOs) and a third with focal loss of Tsc2 from cortical excitatory neurons (f-Tsc2 KOs). Total hippocampal vessel length and volume per dentate gyrus were dramatically increased in DGC-Pten knock-outs. DGC-Pten knock-outs had larger dentate gyri overall, however, and when normalized to these larger structures, vessel density was preserved. In addition, tests of blood-brain barrier integrity did not reveal increased permeability. FB-Pten KOs recapitulated the findings in the more restricted DGC-Pten KOs, with increased vessel area, but preserved vessel density. FB-Pten KOs did, however, exhibit elevated levels of the angiogenic factor VegfA. In contrast to findings with Pten, focal loss of Tsc2 from cortical excitatory neurons produced a localized increase in vessel density. Together, these studies demonstrate that hypervascularization is not a consistent feature of mTOR hyperactivation models and suggest that loss of different mTOR pathway regulatory genes exert distinct effects on angiogenesis.
Collapse
Affiliation(s)
- Mary Dusing
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH 45229
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH 45229
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45219
| | - Angela White
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Lilian G Jerow
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45219
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH 45229
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH 45229
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45219
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH 45229
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH 45229
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45219
| |
Collapse
|
9
|
LaSarge CL, Pun RYK, Gu Z, Riccetti MR, Namboodiri DV, Tiwari D, Gross C, Danzer SC. mTOR-driven neural circuit changes initiate an epileptogenic cascade. Prog Neurobiol 2020; 200:101974. [PMID: 33309800 DOI: 10.1016/j.pneurobio.2020.101974] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.
Collapse
Affiliation(s)
- Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Raymund Y K Pun
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Zhiqing Gu
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Shanghai Children's Hospital, Shanghai, 200062, China
| | - Matthew R Riccetti
- Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Devi V Namboodiri
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christina Gross
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Anesthesia, University of Cincinnati, Cincinnati, OH, 45267, United States.
| |
Collapse
|