1
|
Sanches EF, Dos Santos TM, do Carmo MB, Carvalho AVS, Ramires Junior OV, Sizonenko SV, Netto CA, Wyse ATS. Environmental enrichment reverses cognitive impairments and hippocampus tissue loss without altering the redox state in rats exposed to severe chronic hyperhomocysteinemia. Behav Brain Res 2025; 485:115522. [PMID: 40054505 DOI: 10.1016/j.bbr.2025.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/06/2025]
Abstract
INTRODUCTION Classical homocystinuria is a genetic disease caused by partial or total deficiency of cystathionine-β synthase (CβS) enzyme activity, ultimately leading to brain alterations and early atherosclerotic disease. Currently, there is no cure for the disease and the treatments consist in reducing homocysteine levels through diet, however not all patients respond to therapy. Due to its ability to increase neurotrophins production and decrease oxidative stress in the brain, environmental enrichment (EE) has been used with success as an adjuvant non-pharmacological therapy for CNS disorders. Here, we investigated the effects of 4 weeks enriched environment in a severe chronic chemically-induced model of hyperhomocysteinemia (HHCY) in Wistar rats. METHODS Animals of both sexes were subjected to homocysteine administration subcutaneously (12 h intervals) from day 6 of life (P6) to P28. After this period, animals were continuously exposed to the enriched environment (or standard cages) for 30 days. Animals were tested for cognition and locomotor abilities and hippocampi were collected for the assessment of oxidative stress and histological damage. RESULTS Animals in the HHCY group showed impaired learning in the reference memory assessment in the Morris water maze with no effects in the novel objects recognition test. HHCY did not impair locomotion in the open field nor in the horizontal ladder task. HHCY rats presented decreased hippocampal volume reversed by EE. Enrichment was also able to reverse cognitive impairments in the spatial memory, improve coordination in the ladder walking and recognition memory in the NOR test. HHCY altered redox balance, with no protective effects of EE. CONCLUSIONS Due to its benefits and no side effects reported in literature, EE can be suggested as potential complimentary therapy to improve memory and motricity impairments in homocystinuric patients, however the mechanisms involved in this neuroprotection needs further investigation.
Collapse
Affiliation(s)
- E F Sanches
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - T M Dos Santos
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M B do Carmo
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A V S Carvalho
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - O V Ramires Junior
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C A Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T S Wyse
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Lee VY, Nils AVM, Arruda BP, Xavier GF, Nogueira MI, Motta-Teixeira LC, Takada SH. Spontaneous running wheel exercise during pregnancy prevents later neonatal-anoxia-induced somatic and neurodevelopmental alterations. IBRO Neurosci Rep 2024; 17:263-279. [PMID: 39310269 PMCID: PMC11414703 DOI: 10.1016/j.ibneur.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction About 15-20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia. Methods spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24-36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75. Results gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring. Conclusion spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.
Collapse
Affiliation(s)
- Vitor Yonamine Lee
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Aline Vilar Machado Nils
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Bruna Petrucelli Arruda
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| | - Gilberto Fernando Xavier
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Maria Inês Nogueira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Lívia Clemente Motta-Teixeira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, R. Jaguaribe, 155 - Vila Buarque, Sao Paulo, SP 01224-001, Brazil
| | - Silvia Honda Takada
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
3
|
Durán-Carabali LE, Odorcyk FK, Grun LK, Schmitz F, Ramires Junior OV, de Oliveria MR, Campos KF, Hoeper E, Carvalho AVS, Greggio S, Venturine GT, Zimmer ER, Barbé-Tuana F, Wyse ATS, Netto CA. Maternal environmental enrichment protects neonatal brains from hypoxic-ischemic challenge by mitigating brain energetic dysfunction and modulating glial cell responses. Exp Neurol 2024; 374:114713. [PMID: 38325654 DOI: 10.1016/j.expneurol.2024.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
There is evidence that maternal milieu and changes in environmental factors during the prenatal period may exert a lasting impact on the brain health of the newborn, even in case of neonatal brain hypoxia-ischemia (HI). The present study aimed to investigate the effects of maternal environmental enrichment (EE) on HI-induced energetic and metabolic failure, along with subsequent neural cell responses in the early postnatal period. Male Wistar pups born to dams exposed to maternal EE or standard conditions (SC) were randomly divided into Sham-SC, HI-SC, Sham-EE, and HI-EE groups. Neonatal HI was induced on postnatal day (PND) 3. The Na+,K+-ATPase activity, mitochondrial function and neuroinflammatory related-proteins were assessed at 24 h and 48 h after HI. MicroPET-FDG scans were used to measure glucose uptake at three time points: 24 h post-HI, PND18, and PND24. Moreover, neuronal preservation and glial cell responses were evaluated at PND18. After HI, animals exposed to maternal EE showed an increase in Na+,K+-ATPase activity, preservation of mitochondrial potential/mass ratio, and a reduction in mitochondrial swelling. Glucose uptake was preserved in HI-EE animals from PND18 onwards. Maternal EE attenuated HI-induced cell degeneration, white matter injury, and reduced astrocyte immunofluorescence. Moreover, the HI-EE group exhibited elevated levels of IL-10 and a reduction in Iba-1 positive cells. Data suggested that the regulation of AKT/ERK1/2 signaling pathways could be involved in the effects of maternal EE. This study evidenced that antenatal environmental stimuli could promote bioenergetic and neural resilience in the offspring against early HI damage, supporting the translational value of pregnancy-focused environmental treatments.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - F K Odorcyk
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - L K Grun
- Group of Inflammation and Cellular Senescence, Graduate Program in Cellular and Molecular Biology, School of Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - F Schmitz
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab.), Brazil
| | - O V Ramires Junior
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab.), Brazil
| | - M R de Oliveria
- Department of Morphology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - K F Campos
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E Hoeper
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A V S Carvalho
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - S Greggio
- Undergraduate Program in Biomedicine, School of Health and Life Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - G T Venturine
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - E R Zimmer
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - F Barbé-Tuana
- Group of Inflammation and Cellular Senescence, Graduate Program in Cellular and Molecular Biology, School of Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - A T S Wyse
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab.), Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C A Netto
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Xu J, Gao S, Xin M, Chen W, Wang K, Liu W, Yan X, Peng S, Ren Y. Comparative Tandem Mass Tag-Based Quantitative Proteomics Analysis of Liver Against Chronic Hypoxia: Molecular Insights Into Metabolism in Rats. High Alt Med Biol 2023; 24:49-58. [PMID: 36706039 PMCID: PMC10027340 DOI: 10.1089/ham.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Xu, Jin, Shenhan Gao, Mingyuan Xin, Wenjie Chen, Kaikun Wang, Wenjing Liu, Xinzong Yan, Sinan Peng, and Yanming Ren. Comparative tandem mass tag-based quantitative proteomics analysis of liver against chronic hypoxia: molecular insights into metabolism in rats. High Alt Med Biol. 24:49-58, 2023. Objective: Using a metabolomic approach, we uncovered key regulators in metabolism from tandem mass tag (TMT)-based proteomic analysis in animals chronically exposed to hypoxia. Methods: Sixteen Sprague-Dawley rats (n = 8 per group) were exposed to chronic normoxia or hypoxia (380 mmHg corresponding to a simulated altitude of 5,500 m) for 35 consecutive days. Hypoxia-induced alterations in metabolic pathways were analyzed from TMT-based proteomic analysis, complemented by western blot validation of key regulators. Results: We profiled biochemical parameters and serum lipids, found that serum alanine aminotransferase and blood glucose were not significantly changed due to chronic hypoxia. However, serum triglycerides, total cholesterol, high-density lipoprotein, and low-density lipoprotein (LDL) were significantly affected by chronic hypoxia. And the levels of LDL nearly doubled (p < 0.05) after hypoxia exposure for 35 days. Through Kyoto Encyclopedia of Genes and Genomes classification, we found several metabolic pathways were enriched, including lipid metabolism, cofactor and vitamin metabolism, amino acids metabolism, carbohydrate metabolism, and energy metabolism. To explore the potential functions of proteins in metabolic pathways that become a coordinated shift under chronic hypoxic conditions, Gene Ontology and pathway analysis were carried out on differentially expressed proteins. As the co-expression network shown in Figure, we identified the most significant differentially expressed proteins after chronic hypoxic changes in the livers of rats. Furthermore, we validated the gene expression profiles at the protein level using western blot. Results of western blot were in accordance with our quantitative polymerase chain reaction findings. The levels of fatty acid synthase and aquaporin 1 were significantly downregulated after 35 days and the levels of ATP citrate lyase, 2'-5'-oligoadenylate synthetase 1A, aldehyde dehydrogenase 2, and Ras-related protein Rap-1A were significantly upregulated after 35 days. Conclusions: Although this study cannot completely account for all the molecular mechanisms in rats, we provide a good analysis of protein expression and profiling of rats under chronic hypoxia conditions.
Collapse
Affiliation(s)
- Jin Xu
- Department of Medicine, Qinghai University, Xining, China
| | - Shenhan Gao
- Department of Ecology, Qinghai University Plateau Biology Jing Ying Class, Grade 19, Xining, China
| | - Mingyuan Xin
- Department of Medicine, Qinghai University Clinical Medicine Class 1, Grade 19, Xining, China
| | - Wenjie Chen
- Department of Medicine, Qinghai University Clinical Medicine Class 6, Grade 20, Xining, China
| | - Kaikun Wang
- Department of Medicine, Qinghai University Clinical Medicine Class 3, Grade 20, Xining, China
| | - Wenjing Liu
- Department of Medicine, Qinghai University the Graduate Student of Foundation Medical of 2020, Xining, China
| | - Xinzong Yan
- Department of Medicine, Qinghai University the Graduate Student of Foundation Medical of 2021, Xining, China
| | - Sinan Peng
- Department of Mechanical Engineering, Qinghai University Material Forming and Control Engineering Class, Grade 20, Xining, China
| | - Yanming Ren
- Department of Medicine, Qinghai University, Xining, China
| |
Collapse
|