1
|
Wilkes BJ, Adury RZ, Berryman D, Concepcion LR, Liu Y, Yokoi F, Maugee C, Li Y, Vaillancourt DE. Cell-specific Dyt1 ∆GAG knock-in to basal ganglia and cerebellum reveal differential effects on motor behavior and sensorimotor network function. Exp Neurol 2023; 367:114471. [PMID: 37321386 PMCID: PMC10695146 DOI: 10.1016/j.expneurol.2023.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Dystonia is a neurological movement disorder characterized by repetitive, unintentional movements and disabling postures that result from sustained or intermittent muscle contractions. The basal ganglia and cerebellum have received substantial focus in studying DYT1 dystonia. It remains unclear how cell-specific ∆GAG mutation of torsinA within specific cells of the basal ganglia or cerebellum affects motor performance, somatosensory network connectivity, and microstructure. In order to achieve this goal, we generated two genetically modified mouse models: in model 1 we performed Dyt1 ∆GAG conditional knock-in (KI) in neurons that express dopamine-2 receptors (D2-KI), and in model 2 we performed Dyt1 ∆GAG conditional KI in Purkinje cells of the cerebellum (Pcp2-KI). In both of these models, we used functional magnetic resonance imaging (fMRI) to assess sensory-evoked brain activation and resting-state functional connectivity, and diffusion MRI to assess brain microstructure. We found that D2-KI mutant mice had motor deficits, abnormal sensory-evoked brain activation in the somatosensory cortex, as well as increased functional connectivity of the anterior medulla with cortex. In contrast, we found that Pcp2-KI mice had improved motor performance, reduced sensory-evoked brain activation in the striatum and midbrain, as well as reduced functional connectivity of the striatum with the anterior medulla. These findings suggest that (1) D2 cell-specific Dyt1 ∆GAG mediated torsinA dysfunction in the basal ganglia results in detrimental effects on the sensorimotor network and motor output, and (2) Purkinje cell-specific Dyt1 ∆GAG mediated torsinA dysfunction in the cerebellum results in compensatory changes in the sensorimotor network that protect against dystonia-like motor deficits.
Collapse
Affiliation(s)
- B J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - R Z Adury
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - D Berryman
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - L R Concepcion
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Y Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - F Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - C Maugee
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Y Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - D E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Berryman D, Barrett J, Liu C, Maugee C, Waldbaum J, Yi D, Xing H, Yokoi F, Saxena S, Li Y. Motor deficit and lack of overt dystonia in Dlx conditional Dyt1 knockout mice. Behav Brain Res 2023; 439:114221. [PMID: 36417958 PMCID: PMC10364669 DOI: 10.1016/j.bbr.2022.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
DYT1 or DYT-TOR1A dystonia is early-onset generalized dystonia caused by a trinucleotide deletion of GAG in the TOR1A or DYT1 gene leads to the loss of a glutamic acid residue in the resulting torsinA protein. A mouse model with overt dystonia is of unique importance to better understand the DYT1 pathophysiology and evaluate preclinical drug efficacy. DYT1 dystonia is likely a network disorder involving multiple brain regions, particularly the basal ganglia. Tor1a conditional knockout in the striatum or cerebral cortex leads to motor deficits, suggesting the importance of corticostriatal connection in the pathogenesis of dystonia. Indeed, corticostriatal long-term depression impairment has been demonstrated in multiple targeted DYT1 mouse models. Pappas and colleagues developed a conditional knockout line (Dlx-CKO) that inactivated Tor1a in the forebrain and surprisingly displayed overt dystonia. We set out to validate whether conditional knockout affecting both cortex and striatum would lead to overt dystonia and whether machine learning-based video behavioral analysis could be used to facilitate high throughput preclinical drug screening. We generated Dlx-CKO mice and found no overt dystonia or motor deficits at 4 months. At 8 months, retesting revealed motor deficits in rotarod, beam walking, grip strength, and hyperactivity in the open field; however, no overt dystonia was visually discernible or through the machine learning-based video analysis. Consistent with other targeted DYT1 mouse models, we observed age-dependent deficits in the beam walking test, which is likely a better motor behavioral test for preclinical drug testing but more labor-intensive when overt dystonia is absent.
Collapse
Affiliation(s)
- David Berryman
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jake Barrett
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Canna Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian Maugee
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Julien Waldbaum
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Daiyao Yi
- Herbert Wertheim College of Engineering, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shreya Saxena
- Herbert Wertheim College of Engineering, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|