1
|
Yan L, Li Z, Li C, Chen J, Zhou X, Cui J, Liu P, Shen C, Chen C, Hong H, Xu G, Cui Z. Hspb1 and Lgals3 in spinal neurons are closely associated with autophagy following excitotoxicity based on machine learning algorithms. PLoS One 2024; 19:e0303235. [PMID: 38728287 PMCID: PMC11086895 DOI: 10.1371/journal.pone.0303235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.
Collapse
Affiliation(s)
- Lei Yan
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zihao Li
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chuanbo Li
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jingyu Chen
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xun Zhou
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaming Cui
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Liu
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chong Shen
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chu Chen
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hongxiang Hong
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Guanhua Xu
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhiming Cui
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Tang S, Botchway BOA, Zhang Y, Wang X, Huang M, Liu X. Resveratrol can improve spinal cord injury by activating Nrf2/HO-1 signaling pathway. Ann Anat 2024; 251:152180. [PMID: 37879499 DOI: 10.1016/j.aanat.2023.152180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Spinal cord injury (SCI) often induces severe sensory and motor dysfunction. Oxidative stress is an important pathophysiological process of secondary SCI, and its inhibition could facilitate the alleviation of the injury. Resveratrol is a natural plant polyphenol compound that has significant antioxidant and anti-inflammatory effects. It can inhibit oxidative stress by activating the Nrf2/HO-1 signal pathway. In this report, we analyze the antioxidant effect of resveratrol in SCI, clarify the specific mechanism of action and provide a theoretical basis for the clinical employment of resveratrol for SCI.
Collapse
Affiliation(s)
- Shi Tang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | | | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
3
|
Huang Y, Wang J, Yue C, Wang R, Guo Q, Wang T, Wang D, Dong H, Hu Y, Tao G, Li X. An In Situ Assembled Trapping Gel Repairs Spinal Cord Injury by Capturing Glutamate and Free Calcium Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206229. [PMID: 36683214 DOI: 10.1002/smll.202206229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Spinal cord injury (SCI) can lead to devastating autonomic dysfunction. One of the most challenging issues for functional repair in SCI is the secondary damage caused by the increased release of glutamate and free Ca2+ from injured cells. Here, an in situ assembled trapping gel (PF-SA-GAD) is developed to sweep glutamate and Ca2+ , promoting SCI repair. The hydrogel solution is a mixture of recombinant glutamate decarboxylase 67 (rGAD67) protein, sodium alginate (SA), and pluronic F-127 (PF-127). After intrathecal administration, temperature-sensitive PF-127 promoted in situ gelation. Glutamate (Glu) is captured and decarboxylated by rGAD67 into γ-aminobutyric acid (GABA). SA reacted with the free Ca2+ to generate gellable calcium alginate. Thereby, this in situ trapping gel retarded secondary neuron injury caused by Glu and free Ca2+ during SCI. In rat models of SCI, PF-SA-GAD reduces the lesion volume and inflammatory response after SCI, restores the motor function of rats with SCI. Together, the in situ assembled trapping gel is a long-term effective and minimally invasive sweeper for the direct elimination of glutamate and Ca2+ from injury lesions and can be a novel strategy for SCI repair by preventing secondary injury.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pain, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jialun Wang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Chunyan Yue
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210008, China
- Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210008, China
| | - Ran Wang
- Department of Pain, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qiyuan Guo
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Tingyu Wang
- Department of Pain, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Daojuan Wang
- Department of Pain, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210008, China
- Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210008, China
- Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210008, China
| | - Gaojian Tao
- Department of Pain, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xihan Li
- Department of Pain, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| |
Collapse
|
4
|
Li RF, Gui F, Yu C, Luo YM, Guo L. Protective role of muscones on astrocytes under a mechanical-chemical damage model. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:927. [PMID: 36172099 PMCID: PMC9511184 DOI: 10.21037/atm-22-3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Background Traumatic spinal cord injury (SCI) is a major clinical concern and a life-changing neurological condition with substantial socioeconomic implications. The initial mechanical force applied to the spinal cord at the time of injury is known as the primary injury. After the primary injury, ischemia and hypoxia induce cell death and autolysis, which are associated with the release of a group of inflammatory factors and biologically active substances, such as superoxide dismutase (SOD), malonaldehyde (MDA), lactate dehydrogenase (LDH), and tumor necrosis factor-α (TNF-α). These processes are called the secondary injury, and may lead to an excess of extracellular glutamate (Glu), which in turn promotes the neuronal injuries. Muscone has been shown to have anti-inflammatory effects in the treatment of brain diseases and other diseases. However, to date, no study has examined the effects of muscone in the treatment of SCI. Methods Astrocytes were separated and purified by the method of short-term exposure combining with differential sticking wall. Astrocyte was identified by glial fibers acidic protein (GFAP) selecting cell immunochemical staining. A mechanical-chemical damage (MCD) model was established via the primary spinal astrocytes of rats, and treatment was administered with different concentrations of muscone. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) was detected at 6, 12, 24, 48 and 72 h. SOD, MDA, LDH, TNF-alpha and intracellular calcium was detected at 3, 6 and 12 h. Glu in supernatant was detected respectively at 3, 6 and 12 h by enzyme-linked immunosorbent assay (ELISA) method. Intracellular calcium was detected respectively at 3, 6 and 12 h by flow cytometry method. MRNA expression of excitatory amino acid transporters (EAATs) and GFAP were detected by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) method and protein expression of those by western blot at 6 h. Results Muscone reduced the levels of LDH, TNF-α, and MDA after injury, and upregulated the level of SOD. Muscone also reduced the density of extracellular Glu and suppressed the intracellular calcium level. Additionally, it decreased the expression levels of EAATs and GFAPs. Conclusions Muscone has a protective effect on astrocytes in a MCD and inhibits astrocytes’ proliferation.
Collapse
Affiliation(s)
- Rui-Fu Li
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Gui
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yu
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan-Meng Luo
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Guo
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
He X, Li Y, Deng B, Lin A, Zhang G, Ma M, Wang Y, Yang Y, Kang X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55:e13275. [PMID: 35754255 PMCID: PMC9436900 DOI: 10.1111/cpr.13275] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Objects Traumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine‐threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI. Materials and Methods By searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway. Results Early apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro‐inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar. Conclusion The PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Ying Li
- Medical School of Yan'an University, Yan'an University, Yan'an, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Aixin Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| |
Collapse
|