1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Dang M, Wu L, Zhang X. Structural insights and milestones in TDP-43 research: A comprehensive review of its pathological and therapeutic advances. Int J Biol Macromol 2025; 306:141677. [PMID: 40032118 DOI: 10.1016/j.ijbiomac.2025.141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Transactive response (TAR) DNA-binding protein 43 (TDP-43) is a critical RNA/DNA-binding protein involved in various cellular processes, including RNA splicing, transcription regulation, and RNA stability. Mislocalization and aggregation of TDP-43 in the cytoplasm are key features of the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). This review provides a comprehensive retrospective and prospective analysis of TDP-43 research, highlighting structural insights, significant milestones, and the evolving understanding of its physiological and pathological functions. We delineate five major stages in TDP-43 research, from its initial discovery as a pathological hallmark in neurodegeneration to the recent advances in understanding its liquid-liquid phase separation (LLPS) behavior and interactions with cellular processes. Furthermore, we assess therapeutic strategies targeting TDP-43 pathology, categorizing approaches into direct and indirect interventions, alongside modulating aberrant TDP-43 LLPS. We propose that future research will focus on three critical areas: targeting TDP-43 structural polymorphisms for disease-specific therapeutics, exploring dual temporal-spatial modulation of TDP-43, and advancing nano-therapy. More importantly, we emphasize the importance of understanding TDP-43's functional repertoire at the mesoscale, which bridges its molecular functions with broader cellular processes. This review offers a foundational framework for advancing TDP-43 research and therapeutic development.
Collapse
Affiliation(s)
- Mei Dang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Longjiang Wu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1 Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Zhang C, Jia Q, Zhu L, Hou J, Wang X, Li D, Zhang J, Zhang Y, Yang S, Tu Z, Yan X, Yang W, Li S, Li X, Yin P. Suppressing UBE2N ameliorates Alzheimer's disease pathology through the clearance of amyloid beta. Alzheimers Dement 2024; 20:6287-6304. [PMID: 39015037 PMCID: PMC11497675 DOI: 10.1002/alz.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Aging is one of the risk factors for the early onset of Alzheimer's disease (AD). We previously discovered that the age-dependent increase in Ubiquitin Conjugating Enzyme E2 N (UBE2N) plays a role in the accumulation of misfolded proteins through K63 ubiquitination, which has been linked to AD pathogenesis. However, the impact of UBE2N on amyloid pathology and clearance has remained unknown. RESULTS We observed the elevated UBE2N during the amyloid beta (Aβ) generation in the brains of 5×FAD, APP/PS1 mice, and patients with AD, in comparison to healthy individuals. UBE2N overexpression exacerbated amyloid deposition in 5×FAD mice and senescent monkeys, whereas knocking down UBE2N via CRISPR/Cas9 reduced Aβ generation and cognitive deficiency. Moreover, pharmacological inhibition of UBE2N ameliorated Aβ pathology and subsequent transcript defects in 5×FAD mice. DISCUSSION We have discovered that age-dependent expression of UBE2N is a critical regulator of AD pathology. Our findings suggest that UBE2N could serve as a potential pharmacological target for the advancement of AD therapeutics. HIGHLIGHTS Ubiquitin Conjugating Enzyme E2 N (UBE2N) level was elevated during amyloid beta (Aβ) deposition in AD mouse and patients' brains. UBE2N exacerbated Aβ generation in the AD mouse and senescent monkey. Drug inhibition of UBE2N ameliorated Aβ pathology and cognitive deficiency.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Dandan Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Jiawei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Yiran Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Zhuchi Tu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Xin Yan
- Department of Anatomy and NeurobiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Weili Yang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| |
Collapse
|
4
|
Ho PC, Hsieh TC, Tsai KJ. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: From pathomechanisms to therapeutic strategies. Ageing Res Rev 2024; 100:102441. [PMID: 39069095 DOI: 10.1016/j.arr.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Proteostasis failure is a common pathological characteristic in neurodegenerative diseases. Revitalizing clearance systems could effectively mitigate these diseases. The transactivation response (TAR) DNA-binding protein 43 (TDP-43) plays a critical role as an RNA/DNA-binding protein in RNA metabolism and synaptic function. Accumulation of TDP-43 aggregates in the central nervous system is a hallmark of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Autophagy, a major and highly conserved degradation pathway, holds the potential for degrading aggregated TDP-43 and alleviating FTLD/ALS. This review explores the causes of TDP-43 aggregation, FTLD/ALS-related genes, key autophagy factors, and autophagy-based therapeutic strategies targeting TDP-43 proteinopathy. Understanding the underlying pathological mechanisms of TDP-43 proteinopathy can facilitate therapeutic interventions.
Collapse
Affiliation(s)
- Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Chi Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Yamamuro-Tanabe A, Oshima Y, Iyama T, Ishimaru Y, Yoshioka Y. Proteasome inhibitors induce apoptosis by superoxide anion generation via NADPH oxidase 5 in human neuroblastoma SH-SY5Y cells. J Pharmacol Sci 2024; 155:52-62. [PMID: 38677786 DOI: 10.1016/j.jphs.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.
Collapse
Affiliation(s)
- Akiko Yamamuro-Tanabe
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yu Oshima
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Takumi Iyama
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| |
Collapse
|
6
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
7
|
Han M, Saxton A, Currey H, Waldherr SM, Liachko NF, Kraemer BC. Transgenic Dendra2::tau expression allows in vivo monitoring of tau proteostasis in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050473. [PMID: 38469687 PMCID: PMC10985736 DOI: 10.1242/dmm.050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Protein homeostasis is perturbed in aging-related neurodegenerative diseases called tauopathies, which are pathologically characterized by aggregation of the microtubule-associated protein tau (encoded by the human MAPT gene). Transgenic Caenorhabditis elegans serve as a powerful model organism to study tauopathy disease mechanisms, but moderating transgenic expression level has proven problematic. To study neuronal tau proteostasis, we generated a suite of transgenic strains expressing low, medium or high levels of Dendra2::tau fusion proteins by comparing integrated multicopy transgene arrays with single-copy safe-harbor locus strains generated by recombinase-mediated cassette exchange. Multicopy Dendra2::tau strains exhibited expression level-dependent neuronal dysfunction that was modifiable by known genetic suppressors or an enhancer of tauopathy. Single-copy Dendra2::tau strains lacked distinguishable phenotypes on their own but enabled detection of enhancer-driven neuronal dysfunction. We used multicopy Dendra2::tau strains in optical pulse-chase experiments measuring tau turnover in vivo and found that Dendra2::tau turned over faster than the relatively stable Dendra2. Furthermore, Dendra2::tau turnover was dependent on the protein expression level and independent of co-expression with human TDP-43 (officially known as TARDBP), an aggregating protein interacting with pathological tau. We present Dendra2::tau transgenic C. elegans as a novel tool for investigating molecular mechanisms of tau proteostasis.
Collapse
Affiliation(s)
- Marina Han
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sarah M Waldherr
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nicole F Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian C Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Hou Y, Li Y, Xiang JF, Tilahun K, Jiang J, Corces VG, Yao B. TDP-43 chronic deficiency leads to dysregulation of transposable elements and gene expression by affecting R-loop and 5hmC crosstalk. Cell Rep 2024; 43:113662. [PMID: 38184854 PMCID: PMC10857847 DOI: 10.1016/j.celrep.2023.113662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
TDP-43 is an RNA/DNA-binding protein that forms aggregates in various brain disorders. TDP-43 engages in many aspects of RNA metabolism, but its molecular roles in regulating genes and transposable elements (TEs) have not been extensively explored. Chronic TDP-43 knockdown impairs cell proliferation and cellular responses to DNA damage. At the molecular level, TDP-43 chronic deficiency affects gene expression either locally or distally by concomitantly altering the crosstalk between R-loops and 5-hydroxymethylcytosine (5hmC) in gene bodies and long-range enhancer/promoter interactions. Furthermore, TDP-43 knockdown induces substantial disease-relevant TE activation by influencing their R-loop and 5hmC homeostasis in a locus-specific manner. Together, our findings highlight the genomic roles of TDP-43 in modulating R-loop-5hmC coordination in coding genes, distal regulatory elements, and TEs, presenting a general and broad molecular mechanism underlying the contributions of proteinopathies to the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yingzi Hou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kedamawit Tilahun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Wang Z, Zhang C, Fan C, Liu Y. Post-translational modifications in stress granule and their implications in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194989. [PMID: 37751804 DOI: 10.1016/j.bbagrm.2023.194989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Stress granules (SGs) arise as formations of mRNAs and proteins in response to translation initiation inhibition during stress. These dynamic compartments adopt a fluidic nature through liquid-liquid phase separation (LLPS), exhibiting a composition subject to constant change within cellular contexts. Research has unveiled an array of post-translational modifications (PTMs) occurring on SG proteins, intricately orchestrating SG dynamics. In the realm of neurodegenerative diseases, pathological mutant proteins congregate into insoluble aggregates alongside numerous SG proteins, manifesting resilience against disassembly. Specific PTMs conspicuously label these aggregates, designating them for subsequent degradation. The strategic manipulation of aberrant SGs via PTMs emerges as a promising avenue for therapeutic intervention. This review discerns recent strides in comprehending the impact of PTMs on LLPS behavior and the assembly/disassembly kinetics of SGs. By delving into the roles of PTMs in governing SG dynamics, we augment our cognizance of the molecular underpinnings of neurodegeneration. Furthermore, we offer invaluable insights into potential targets for therapeutic intervention in neurodegenerative afflictions, encompassing conditions like amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Zhangshun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen'ang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengyu Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
10
|
Zhou W, Xu R. Current insights in the molecular genetic pathogenesis of amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1189470. [PMID: 37638324 PMCID: PMC10448825 DOI: 10.3389/fnins.2023.1189470] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that leads to the massive loss of motor neurons in cerebrum, brain stem and spinal cord. It affects not only motor neurons but also other neurons and glial cells, resulting in the progressive muscle atrophy, the severe disability and the eventual death due to the respiratory failure. The pathogenesis of ALS is not fully understood. Currently, several factors are considered to be involved in the pathogenesis of ALS, such as genetic factors, imbalances in protein homeostasis, RNA metabolism disorders, mitochondrial dysfunctions, glutamate-mediated excitatory toxicities and intra-neuronal material transport disorders in neurons. The study of genetic mutations related to ALS pathogenesis will link the molecular and cellular mechanisms of the disease, thus enhancing the understanding of its occurrence and progression, thereby providing new insights for the pathogenesis of ALS. This review summarizes the current insights in the molecular genetic pathogenesis of ALS.
Collapse
Affiliation(s)
- Wan Zhou
- Medical College of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, China
| | - Renshi Xu
- Medical College of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, China
| |
Collapse
|
11
|
Kinger S, Dubey AR, Kumar P, Jagtap YA, Choudhary A, Kumar A, Prajapati VK, Dhiman R, Mishra A. Molecular Chaperones' Potential against Defective Proteostasis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12091302. [PMID: 37174703 PMCID: PMC10177248 DOI: 10.3390/cells12091302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuronal degenerative condition identified via a build-up of mutant aberrantly folded proteins. The native folding of polypeptides is mediated by molecular chaperones, preventing their pathogenic aggregation. The mutant protein expression in ALS is linked with the entrapment and depletion of chaperone capacity. The lack of a thorough understanding of chaperones' involvement in ALS pathogenesis presents a significant challenge in its treatment. Here, we review how the accumulation of the ALS-linked mutant FUS, TDP-43, SOD1, and C9orf72 proteins damage cellular homeostasis mechanisms leading to neuronal loss. Further, we discuss how the HSP70 and DNAJ family co-chaperones can act as potential targets for reducing misfolded protein accumulation in ALS. Moreover, small HSPB1 and HSPB8 chaperones can facilitate neuroprotection and prevent stress-associated misfolded protein apoptosis. Designing therapeutic strategies by pharmacologically enhancing cellular chaperone capacity to reduce mutant protein proteotoxic effects on ALS pathomechanisms can be a considerable advancement. Chaperones, apart from directly interacting with misfolded proteins for protein quality control, can also filter their toxicity by initiating strong stress-response pathways, modulating transcriptional expression profiles, and promoting anti-apoptotic functions. Overall, these properties of chaperones make them an attractive target for gaining fundamental insights into misfolded protein disorders and designing more effective therapies against ALS.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
12
|
Sato Y, Terawaki S, Oikawa D, Shimizu K, Okina Y, Ito H, Tokunaga F. Involvement of heterologous ubiquitination including linear ubiquitination in Alzheimer's disease and amyotrophic lateral sclerosis. Front Mol Biosci 2023; 10:1089213. [PMID: 36726375 PMCID: PMC9884707 DOI: 10.3389/fmolb.2023.1089213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), the progressive accumulation of ubiquitin-positive cytoplasmic inclusions leads to proteinopathy and neurodegeneration. Along with the seven types of Lys-linked ubiquitin chains, the linear ubiquitin chain assembly complex (LUBAC)-mediated Met1-linked linear ubiquitin chain, which activates the canonical NF-κB pathway, is also involved in cytoplasmic inclusions of tau in AD and TAR DNA-binding protein 43 in ALS. Post-translational modifications, including heterologous ubiquitination, affect proteasomal and autophagic degradation, inflammatory responses, and neurodegeneration. Single nucleotide polymorphisms (SNPs) in SHARPIN and RBCK1 (which encodes HOIL-1L), components of LUBAC, were recently identified as genetic risk factors of AD. A structural biological simulation suggested that most of the SHARPIN SNPs that cause an amino acid replacement affect the structure and function of SHARPIN. Thus, the aberrant LUBAC activity is related to AD. Protein ubiquitination and ubiquitin-binding proteins, such as ubiquilin 2 and NEMO, facilitate liquid-liquid phase separation (LLPS), and linear ubiquitination seems to promote efficient LLPS. Therefore, the development of therapeutic approaches that target ubiquitination, such as proteolysis-targeting chimeras (PROTACs) and inhibitors of ubiquitin ligases, including LUBAC, is expected to be an additional effective strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, Tottori, Japan,Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Seigo Terawaki
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan,Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Daisuke Oikawa
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshinori Okina
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan,*Correspondence: Fuminori Tokunaga,
| |
Collapse
|
13
|
Lee S, Jo M, Kwon Y, Jeon YM, Kim S, Lee KJ, Kim HJ. PTK2 regulates tau-induced neurotoxicity via phosphorylation of p62 at Ser403. J Neurogenet 2022:1-10. [PMID: 36000467 DOI: 10.1080/01677063.2022.2114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Tau is a microtubule-associated protein that forms insoluble filaments that accumulate as neurofibrillary tangles in neurodegenerative diseases such as Alzheimer's disease and other related tauopathies. A relationship between abnormal Tau accumulation and ubiquitin-proteasome system impairment has been reported. However, the molecular mechanism linking Tau accumulation and ubiquitin proteasome system (UPS) dysfunction remains unclear. Here, we show that overexpression of wild-type or mutant (P301L) Tau increases the abundance of polyubiquitinated proteins and activates the autophagy-lysosome pathway in mammalian neuronal cells. Previous studies found that PTK2 inhibition mitigates toxicity induced by UPS impairment. Thus, we investigated whether PTK2 inhibition can attenuate Tau-induced UPS impairment and cell toxicity. We found that PTK2 inhibition significantly reduces Tau-induced death in mammalian neuronal cells. Moreover, overexpression of WT or mutant Tau increased the phosphorylation levels of PTK2 and p62. We also confirmed that PTK2 inhibition suppresses Tau-induced phosphorylation of PTK2 and p62. Furthermore, PTK2 inhibition significantly attenuated the climbing defect and shortened the lifespan in the Drosophila model of tauopathy. In addition, we observed that phosphorylation of p62 is markedly increased in Alzheimer's disease patients with tauopathies. Taken together, our results indicate that the UPS dysfunction induced by Tau accumulation might contribute directly to neurodegeneration in tauopathies and that PTK2 could be a promising therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, South Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, South Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, South Korea
| |
Collapse
|
14
|
Suppression of Linear Ubiquitination Ameliorates Cytoplasmic Aggregation of Truncated TDP-43. Cells 2022; 11:cells11152398. [PMID: 35954242 PMCID: PMC9367985 DOI: 10.3390/cells11152398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a predominant component of inclusions in the brains and spines of patients with amyotrophic lateral sclerosis (ALS). The progressive accumulation of inclusions leads to proteinopathy in neurons. We have previously shown that Met1(M1)-linked linear ubiquitin, which is specifically generated by the linear ubiquitin chain assembly complex (LUBAC), is colocalized with TDP-43 inclusions in neurons from optineurin-associated familial and sporadic ALS patients, and affects NF-κB activation and apoptosis. To examine the effects of LUBAC-mediated linear ubiquitination on TDP-43 proteinopathies, we performed cell biological analyses using full-length and truncated forms of the ALS-associated Ala315→Thr (A315T) mutant of TDP-43 in Neuro2a cells. The truncated A315T mutants of TDP-43, which lack a nuclear localization signal, efficiently generated cytoplasmic aggregates that were colocalized with multiple ubiquitin chains such as M1-, Lys(K)48-, and K63-chains. Genetic ablation of HOIP or treatment with a LUBAC inhibitor, HOIPIN-8, suppressed the cytoplasmic aggregation of A315T mutants of TDP-43. Moreover, the enhanced TNF-α-mediated NF-κB activity by truncated TDP-43 mutants was eliminated in the presence of HOIPIN-8. These results suggest that multiple ubiquitinations of TDP-43 including M1-ubiquitin affect protein aggregation and inflammatory responses in vitro, and therefore, LUBAC inhibition ameliorates TDP-43 proteinopathy.
Collapse
|
15
|
Yin P, Bai D, Deng F, Zhang C, Jia Q, Zhu L, Chen L, Li B, Guo X, Ye J, Tan Z, Wang L, Li S, Li XJ. SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy 2022; 18:1955-1968. [PMID: 34936539 PMCID: PMC9466617 DOI: 10.1080/15548627.2021.2013653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The cytoplasmic accumulation and aggregates of TARDBP/TDP-43 (TAR DNA binding protein) are a pathological hallmark in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We previously reported that the primate specific cleavage of TARDBP accounts for its cytoplasmic mislocalization in the primate brains, prompting us to further investigate how the cytoplasmic TARDBP mediates neuropathology. Here we reported that cytoplasmic mutant TARDBP reduced SQSTM1 expression selectively in the monkey brain, when compared with the mouse brain, by inducing SQSTM1 mRNA instability via its binding to the unique 3'UTR sequence (GU/UG)n of the primate SQSTM1 transcript. Overexpression of SQSTM1 could diminish the cytoplasmic C-terminal TARDBP accumulation in the monkey brain by augmenting macroautophagy/autophagy activity. Our findings provide additional clues for the pathogenesis of cytoplasmic TARDBP and a potential therapy for mutant TARDBP-mediated neuropathology.
Collapse
Affiliation(s)
- Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Jianmeng Ye
- Guangdong Landao Biotechnology Co. Ltd, Guangzhou, China
| | - Zhiqiang Tan
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022; 19:1061-1084. [PMID: 35790708 PMCID: PMC9587158 DOI: 10.1007/s13311-022-01260-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Johns Hopkins School of Medicine, Dept. of Neurology, Baltimore, MD, USA.
| | - Petr Kalab
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Krause LJ, Herrera MG, Winklhofer KF. The Role of Ubiquitin in Regulating Stress Granule Dynamics. Front Physiol 2022; 13:910759. [PMID: 35694405 PMCID: PMC9174786 DOI: 10.3389/fphys.2022.910759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are dynamic, reversible biomolecular condensates, which assemble in the cytoplasm of eukaryotic cells under various stress conditions. Formation of SGs typically occurs upon stress-induced translational arrest and polysome disassembly. The increase in cytoplasmic mRNAs triggers the formation of a protein-RNA network that undergoes liquid-liquid phase separation when a critical interaction threshold has been reached. This adaptive stress response allows a transient shutdown of several cellular processes until the stress is removed. During the recovery from stress, SGs disassemble to re-establish cellular activities. Persistent stress and disease-related mutations in SG components favor the formation of aberrant SGs that are impaired in disassembly and prone to aggregation. Recently, posttranslational modifications of SG components have been identified as major regulators of SG dynamics. Here, we summarize new insights into the role of ubiquitination in affecting SG dynamics and clearance and discuss implications for neurodegenerative diseases linked to aberrant SG formation.
Collapse
Affiliation(s)
- Laura J. Krause
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Maria G. Herrera
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
18
|
Koehler LC, Grese ZR, Bastos ACS, Mamede LD, Heyduk T, Ayala YM. TDP-43 Oligomerization and Phase Separation Properties Are Necessary for Autoregulation. Front Neurosci 2022; 16:818655. [PMID: 35495061 PMCID: PMC9048411 DOI: 10.3389/fnins.2022.818655] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Loss of TDP-43 protein homeostasis and dysfunction, in particular TDP-43 aggregation, are tied to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 is an RNA binding protein tightly controlling its own expression levels through a negative feedback loop, involving TDP-43 recruitment to the 3′ untranslated region of its own transcript. Aberrant TDP-43 expression caused by autoregulation defects are linked to TDP-43 pathology. Therefore, interactions between TDP-43 and its own transcript are crucial to prevent TDP-43 aggregation and loss of function. However, the mechanisms that mediate this interaction remain ill-defined. We find that a central RNA sequence in the 3′ UTR, which mediates TDP-43 autoregulation, increases the liquid properties of TDP-43 phase separation. Furthermore, binding to this RNA sequence induces TDP-43 condensation in human cell lysates, suggesting that this interaction promotes TDP-43 self-assembly into dynamic ribonucleoprotein granules. In agreement with these findings, our experiments show that TDP-43 oligomerization and phase separation, mediated by the amino and carboxy-terminal domains, respectively, are essential for TDP-43 autoregulation. According to our additional observations, CLIP34-associated phase separation and autoregulation may be efficiently controlled by phosphorylation of the N-terminal domain. Importantly, we find that specific ALS-associated TDP-43 mutations, mainly M337V, and a shortened TDP-43 isoform recently tied to motor neuron toxicity in ALS, disrupt the liquid properties of TDP-43-RNA condensates as well as autoregulatory function. In addition, we find that M337V decreases the cellular clearance of TDP-43 and other RNA binding proteins associated with ALS/FTD. These observations suggest that loss of liquid properties in M337V condensates strongly affects protein homeostasis. Together, this work provides evidence for the central role of TDP-43 oligomerization and liquid-liquid phase separation linked to RNA binding in autoregulation. These mechanisms may be impaired by TDP-43 disease variants and controlled by specific cellular signaling.
Collapse
|