1
|
Qu W, Wu X, Wu W, Wang Y, Sun Y, Deng L, Walker M, Chen C, Dai H, Han Q, Ding Y, Xia Y, Smith G, Li R, Liu NK, Xu XM. Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury. Neural Regen Res 2025; 20:1467-1482. [PMID: 39075913 PMCID: PMC11624882 DOI: 10.4103/nrr.nrr-d-23-01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00029/figure1/v/2024-07-28T173839Z/r/image-tiff Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties. A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury. A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity, and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar, thus limiting axonal reentry into the host spinal cord. Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury. We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders, Schwann cells migrated for considerable distances in both rostral and caudal directions. Such Schwann cell migration led to enhanced axonal regrowth, including the serotonergic and dopaminergic axons originating from supraspinal regions, and promoted recovery of locomotor and urinary bladder functions. Importantly, the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury, even when treatment was delayed for 3 months to mimic chronic spinal cord injury. These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.
Collapse
Affiliation(s)
- Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yan Sun
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heqiao Dai
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying Ding
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yongzhi Xia
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Lin Y, Guo Q, Liu Q, Wang W, Lv A, Zhang L, Li L, Gao J, Huang F. An injectable responsive exosome-releasing hydrogel based on sodium alginate restores motor and bladder function by alleviating the injury microenvironment and facilitating distal nerve repair. Int J Biol Macromol 2025; 304:140819. [PMID: 39929458 DOI: 10.1016/j.ijbiomac.2025.140819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
In the early stage of spinal cord injury (SCI), excessive reactive oxygen species (ROS) accumulate at the injury site to establish a microenvironment favoring complex secondary injuries, including cavity formation, and impacting the distal lumbosacral spinal cord. Currently, no definitive clinical treatment is available for SCI. Here, we created an responsive and injectable hydrogel composite (GEL-EXO) by modifying and cross-linking biological macromolecules sodium alginate (SA) and gelatin in the form of embedded exosomes. This GEL-EXO composite integrated the bioactivity of exosomes with the gap-filling function of hydrogels. Our experiments demonstrated that the composite could simultaneously repair spinal cord tissues at the injury site and the distal lumbosacral region, thereby restoring motor function and reinitiating bladder function. This therapeutic strategy may promise a brand-new holistic intervention for SCI.
Collapse
Affiliation(s)
- Yabin Lin
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan Yantai 264003, Shandong, China
| | - Qixuan Guo
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan Yantai 264003, Shandong, China
| | - Qing Liu
- Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong 250021, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Weikang Wang
- Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong 250021, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Ang Lv
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan Yantai 264003, Shandong, China
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan Yantai 264003, Shandong, China
| | - Liming Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan Yantai 264003, Shandong, China.
| |
Collapse
|
3
|
Xiao Y, He Y, Zhong D, Liu B, Tang Z, Lan X, Dong Y, Du H, Liu Y, Luo J. Effect of Engineered Cyanobacterial Capsules on a Neurogenic Bladder after Spinal Cord Injury. ACS NANO 2025; 19:11841-11860. [PMID: 40116782 DOI: 10.1021/acsnano.4c14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The presence of a neurogenic bladder is a severe but common complication of spinal cord injury (SCI). Multiple pathological factors, such as hypoxia, ischemia, and oxidative stress caused by SCI, promote M1 microglial polarization and the release of proinflammatory factors to amplify inflammation. An excessive inflammatory response stimulates the generation of reactive oxygen species (ROS) and induces oxidative stress to promote neuronal ferroptosis, thus leading to bladder dysfunction after SCI. Therefore, promoting the recovery of neural function by regulating the interaction between microglia and neurons is important. For this purpose, we developed an engineered immunoregulatory cyanobacterial capsule named siRNA@Cyanzyme, which consists of MnO2@zeolitic-imidazolate framework@cyanobacteria (Cyanzyme) and a small-interfering RNA targeting ACSL4 (siRNA-ACSL4). Cyanzyme reversed M1 microglial polarization via photosynthetic oxygen to promote anti-inflammatory factor release. MnO2 nanoenzymes grown on the surface of ZIF-8 eliminated excessive ROS to reduce oxidative stress. Moreover, Cyanzyme increased the delivery efficiency of siRNA-ACSL4, which is a key regulator of ferroptosis. Both treatments alleviated GABAergic neuron damage to mitigate bladder dysfunction. Our data demonstrated that siRNA@Cyanzyme effectively reversed M1 microglial polarization, reduced neuronal ferroptosis, and ultimately restored neurogenic bladder function.
Collapse
Affiliation(s)
- Yuhong Xiao
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yizhe He
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Da Zhong
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330006, P.R. China
| | - Bo Liu
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - ZhiBo Tang
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoyong Lan
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - YiYang Dong
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huixian Du
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu Liu
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Luo
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Dominguez-Bajo A, Clotman F. Potential Roles of Specific Subclasses of Premotor Interneurons in Spinal Cord Function Recovery after Traumatic Spinal Cord Injury in Adults. Cells 2024; 13:652. [PMID: 38667267 PMCID: PMC11048910 DOI: 10.3390/cells13080652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The differential expression of transcription factors during embryonic development has been selected as the main feature to define the specific subclasses of spinal interneurons. However, recent studies based on single-cell RNA sequencing and transcriptomic experiments suggest that this approach might not be appropriate in the adult spinal cord, where interneurons show overlapping expression profiles, especially in the ventral region. This constitutes a major challenge for the identification and direct targeting of specific populations that could be involved in locomotor recovery after a traumatic spinal cord injury in adults. Current experimental therapies, including electrical stimulation, training, pharmacological treatments, or cell implantation, that have resulted in improvements in locomotor behavior rely on the modulation of the activity and connectivity of interneurons located in the surroundings of the lesion core for the formation of detour circuits. However, very few publications clarify the specific identity of these cells. In this work, we review the studies where premotor interneurons were able to create new intraspinal circuits after different kinds of traumatic spinal cord injury, highlighting the difficulties encountered by researchers, to classify these populations.
Collapse
Affiliation(s)
- Ana Dominguez-Bajo
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Animal Molecular and Cellular Biology Group (AMCB), Place Croix du Sud 4–5, 1348 Louvain la Neuve, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Animal Molecular and Cellular Biology Group (AMCB), Place Croix du Sud 4–5, 1348 Louvain la Neuve, Belgium
| |
Collapse
|
5
|
Rana S, Alom F, Martinez RC, Fuller DD, Mickle AD. Acute ampakines increase voiding function and coordination in a rat model of SCI. eLife 2024; 12:RP89767. [PMID: 38451184 PMCID: PMC10962400 DOI: 10.7554/elife.89767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Neurogenic bladder dysfunction causes urological complications and reduces the quality of life in persons with spinal cord injury (SCI). Glutamatergic signaling via AMPA receptors is fundamentally important to the neural circuits controlling bladder voiding. Ampakines are positive allosteric modulators of AMPA receptors that can enhance the function of glutamatergic neural circuits after SCI. We hypothesized that ampakines can acutely stimulate bladder voiding that has been impaired due to thoracic contusion SCI. Adult female Sprague-Dawley rats received a unilateral contusion of the T9 spinal cord (n = 10). Bladder function (cystometry) and coordination with the external urethral sphincter (EUS) were assessed 5 d post-SCI under urethane anesthesia. Data were compared to responses in spinal-intact rats (n = 8). The 'low-impact' ampakine CX1739 (5, 10, or 15 mg/kg) or vehicle (2-hydroxypropyl-beta-cyclodextrin [HPCD]) was administered intravenously. The HPCD vehicle had no discernible impact on voiding. In contrast, following CX1739, the pressure threshold for inducing bladder contraction, voided volume, and the interval between bladder contractions were significantly reduced. These responses occurred in a dose-dependent manner. We conclude that modulating AMPA receptor function using ampakines can rapidly improve bladder-voiding capability at subacute time points following contusion SCI. These results may provide a new and translatable method for therapeutic targeting of bladder dysfunction acutely after SCI.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
- McKnight Brain Institute, University of FloridaGainesvilleUnited States
- Breathing Research and Therapeutics CenterGainesvilleUnited States
| | - Firoj Alom
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesvilleUnited States
- Department of Veterinary and Animal Sciences, University of RajshahiRajshahiBangladesh
| | - Robert C Martinez
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
- McKnight Brain Institute, University of FloridaGainesvilleUnited States
- Breathing Research and Therapeutics CenterGainesvilleUnited States
| | - David D Fuller
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
- McKnight Brain Institute, University of FloridaGainesvilleUnited States
- Breathing Research and Therapeutics CenterGainesvilleUnited States
| | - Aaron D Mickle
- McKnight Brain Institute, University of FloridaGainesvilleUnited States
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesvilleUnited States
- Department of Veterinary and Animal Sciences, University of RajshahiRajshahiBangladesh
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering, University of FloridaGainesvilleUnited States
| |
Collapse
|
6
|
Rana S, Alom F, Martinez RC, Fuller DD, Mickle AD. Acute ampakines increase voiding function and coordination in a rat model of SCI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542339. [PMID: 37293023 PMCID: PMC10245998 DOI: 10.1101/2023.05.26.542339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neurogenic bladder dysfunction causes urological complications and reduces the quality of life in persons with spinal cord injury (SCI). Glutamatergic signaling via AMPA receptors is fundamentally important to the neural circuits controlling bladder voiding. Ampakines are positive allosteric modulators of AMPA receptors that can enhance the function of glutamatergic neural circuits after SCI. We hypothesized that ampakines can acutely stimulate bladder voiding that has been impaired due to thoracic contusion SCI. Adult female Sprague Dawley rats received a unilateral contusion of the T9 spinal cord (n=10). Bladder function (cystometry) and coordination with the external urethral sphincter (EUS) were assessed five days post-SCI under urethane anesthesia. Data were compared to responses in spinal intact rats (n=8). The "low impact" ampakine CX1739 (5, 10, or 15 mg/kg) or vehicle (HPCD) was administered intravenously. The HPCD vehicle had no discernable impact on voiding. In contrast, following CX1739, the pressure threshold for inducing bladder contraction, voided volume, and the interval between bladder contractions were significantly reduced. These responses occurred in a dose-dependent manner. We conclude that modulating AMPA receptor function using ampakines can rapidly improve bladder voiding capability at sub-acute time points following contusion SCI. These results may provide a new and translatable method for therapeutic targeting of bladder dysfunction acutely after SCI.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610
- Breathing Research and Therapeutics Center, Gainesville, FL, 32610
| | - Firoj Alom
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi
| | - Robert C Martinez
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610
- Breathing Research and Therapeutics Center, Gainesville, FL, 32610
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610
- Breathing Research and Therapeutics Center, Gainesville, FL, 32610
| | - Aaron D Mickle
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida
| |
Collapse
|
7
|
Doelman AW, Streijger F, Majerus SJA, Damaser MS, Kwon BK. Assessing Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury: Animal Models in Preclinical Neuro-Urology Research. Biomedicines 2023; 11:1539. [PMID: 37371634 PMCID: PMC10294962 DOI: 10.3390/biomedicines11061539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Neurogenic bladder dysfunction is a condition that affects both bladder storage and voiding function and remains one of the leading causes of morbidity after spinal cord injury (SCI). The vast majority of individuals with severe SCI develop neurogenic lower urinary tract dysfunction (NLUTD), with symptoms ranging from neurogenic detrusor overactivity, detrusor sphincter dyssynergia, or sphincter underactivity depending on the location and extent of the spinal lesion. Animal models are critical to our fundamental understanding of lower urinary tract function and its dysfunction after SCI, in addition to providing a platform for the assessment of potential therapies. Given the need to develop and evaluate novel assessment tools, as well as therapeutic approaches in animal models of SCI prior to human translation, urodynamics assessment techniques have been implemented to measure NLUTD function in a variety of animals, including rats, mice, cats, dogs and pigs. In this narrative review, we summarize the literature on the use of animal models for cystometry testing in the assessment of SCI-related NLUTD. We also discuss the advantages and disadvantages of various animal models, and opportunities for future research.
Collapse
Affiliation(s)
- Adam W. Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Steve J. A. Majerus
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
| | - Margot S. Damaser
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
- Department of Orthopaedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
8
|
Kiss Bimbova K, Bacova M, Kisucka A, Gálik J, Ileninova M, Kuruc T, Magurova M, Lukacova N. Impact of Endurance Training on Regeneration of Axons, Glial Cells, and Inhibitory Neurons after Spinal Cord Injury: A Link between Functional Outcome and Regeneration Potential within the Lesion Site and in Adjacent Spinal Cord Tissue. Int J Mol Sci 2023; 24:ijms24108616. [PMID: 37239968 DOI: 10.3390/ijms24108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Endurance training prior to spinal cord injury (SCI) has a beneficial effect on the activation of signaling pathways responsible for survival, neuroplasticity, and neuroregeneration. It is, however, unclear which training-induced cell populations are essential for the functional outcome after SCI. Adult Wistar rats were divided into four groups: control, six weeks of endurance training, Th9 compression (40 g/15 min), and pretraining + Th9 compression. The animals survived six weeks. Training alone increased the gene expression and protein level of immature CNP-ase oligodendrocytes (~16%) at Th10, and caused rearrangements in neurotrophic regulation of inhibitory GABA/glycinergic neurons at the Th10 and L2 levels, known to contain the interneurons with rhythmogenic potential. Training + SCI upregulated markers for immature and mature (CNP-ase, PLP1) oligodendrocytes by ~13% at the lesion site and caudally, and increased the number of GABA/glycinergic neurons in specific spinal cord regions. In the pretrained SCI group, the functional outcome of hindlimbs positively correlated with the protein levels of CNP-ase, PLP1, and neurofilaments (NF-l), but not with the outgrowing axons (Gap-43) at the lesion site and caudally. These results indicate that endurance training applied before SCI potentiates the repair in damaged spinal cord, and creates a suitable environment for neurological outcome.
Collapse
Affiliation(s)
- Katarina Kiss Bimbova
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Maria Bacova
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Alexandra Kisucka
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Ján Gálik
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Maria Ileninova
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Tomas Kuruc
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Martina Magurova
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Nadezda Lukacova
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| |
Collapse
|
9
|
Shimizu N, Saito T, Wada N, Hashimoto M, Shimizu T, Kwon J, Cho KJ, Saito M, Karnup S, de Groat WC, Yoshimura N. Molecular Mechanisms of Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury. Int J Mol Sci 2023; 24:7885. [PMID: 37175592 PMCID: PMC10177842 DOI: 10.3390/ijms24097885] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
This article provides a synopsis of current progress made in fundamental studies of lower urinary tract dysfunction (LUTD) after spinal cord injury (SCI) above the sacral level. Animal models of SCI allowed us to examine the effects of SCI on the micturition control and the underlying neurophysiological processes of SCI-induced LUTD. Urine storage and elimination are the two primary functions of the LUT, which are governed by complicated regulatory mechanisms in the central and peripheral nervous systems. These neural systems control the action of two functional units in the LUT: the urinary bladder and an outlet consisting of the bladder neck, urethral sphincters, and pelvic-floor striated muscles. During the storage phase, the outlet is closed, and the bladder is inactive to maintain a low intravenous pressure and continence. In contrast, during the voiding phase, the outlet relaxes, and the bladder contracts to facilitate adequate urine flow and bladder emptying. SCI disrupts the normal reflex circuits that regulate co-ordinated bladder and urethral sphincter function, leading to involuntary and inefficient voiding. Following SCI, a spinal micturition reflex pathway develops to induce an overactive bladder condition following the initial areflexic phase. In addition, without proper bladder-urethral-sphincter coordination after SCI, the bladder is not emptied as effectively as in the normal condition. Previous studies using animal models of SCI have shown that hyperexcitability of C-fiber bladder afferent pathways is a fundamental pathophysiological mechanism, inducing neurogenic LUTD, especially detrusor overactivity during the storage phase. SCI also induces neurogenic LUTD during the voiding phase, known as detrusor sphincter dyssynergia, likely due to hyperexcitability of Aδ-fiber bladder afferent pathways rather than C-fiber afferents. The molecular mechanisms underlying SCI-induced LUTD are multifactorial; previous studies have identified significant changes in the expression of various molecules in the peripheral organs and afferent nerves projecting to the spinal cord, including growth factors, ion channels, receptors and neurotransmitters. These findings in animal models of SCI and neurogenic LUTD should increase our understanding of pathophysiological mechanisms of LUTD after SCI for the future development of novel therapies for SCI patients with LUTD.
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Pelvic Floor Center, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Mamoru Hashimoto
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Kang Jun Cho
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Ferreira A, Nascimento D, Cruz CD. Molecular Mechanism Operating in Animal Models of Neurogenic Detrusor Overactivity: A Systematic Review Focusing on Bladder Dysfunction of Neurogenic Origin. Int J Mol Sci 2023; 24:ijms24043273. [PMID: 36834694 PMCID: PMC9959149 DOI: 10.3390/ijms24043273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Neurogenic detrusor overactivity (NDO) is a severe lower urinary tract disorder, characterized by urinary urgency, retention, and incontinence, as a result of a neurologic lesion that results in damage in neuronal pathways controlling micturition. The purpose of this review is to provide a comprehensive framework of the currently used animal models for the investigation of this disorder, focusing on the molecular mechanisms of NDO. An electronic search was performed with PubMed and Scopus for literature describing animal models of NDO used in the last 10 years. The search retrieved 648 articles, of which reviews and non-original articles were excluded. After careful selection, 51 studies were included for analysis. Spinal cord injury (SCI) was the most frequently used model to study NDO, followed by animal models of neurodegenerative disorders, meningomyelocele, and stroke. Rats were the most commonly used animal, particularly females. Most studies evaluated bladder function through urodynamic methods, with awake cystometry being particularly preferred. Several molecular mechanisms have been identified, including changes in inflammatory processes, regulation of cell survival, and neuronal receptors. In the NDO bladder, inflammatory markers, apoptosis-related factors, and ischemia- and fibrosis-related molecules were found to be upregulated. Purinergic, cholinergic, and adrenergic receptors were downregulated, as most neuronal markers. In neuronal tissue, neurotrophic factors, apoptosis-related factors, and ischemia-associated molecules are increased, as well as markers of microglial and astrocytes at lesion sites. Animal models of NDO have been crucial for understanding the pathophysiology of lower urinary tract (LUT) dysfunction. Despite the heterogeneity of animal models for NDO onset, most studies rely on traumatic SCI models rather than other NDO-driven pathologies, which may result in some issues when translating pre-clinical observations to clinical settings other than SCI.
Collapse
Affiliation(s)
- Ana Ferreira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
| | - Diogo Nascimento
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-220426740; Fax: +351-225513655
| |
Collapse
|