1
|
Gutiérrez-Sánchez M, Carrasco-Yepez MM, Herrera-Díaz J, Rojas-Hernández S. Identification of differential protein recognition pattern between Naegleria fowleri and Naegleria lovaniensis. Parasite Immunol 2020; 42:e12715. [PMID: 32191816 DOI: 10.1111/pim.12715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
Many pathogenicity factors are involved in the development of primary amoebic meningoencephalitis (PAM) caused by N fowleri. However, most of them are not exclusive for N fowleri and they have not even been described in other nonpathogenic Naegleria species. Therefore, the objective of this work was to identify differential proteins and protein pattern recognition between Naegleria fowleri and Naegleria lovaniensis using antibodies anti-N fowleri as strategy to find vaccine candidates against meningoencephalitis. Electrophoresis and Western blots conventional and 2-DE were performed for the identification of antigenic proteins, and these were analysed by the mass spectrometry technique. The results obtained in 2-DE gels and Western blot showed very notable differences in spot intensity between these two species, specifically those with relative molecular weight of 100, 75, 50 and 19 kDa. Some spots corresponding to these molecular weights were identified as actin fragment, myosin II, heat shock protein, membrane protein Mp2CL5 among others, with differences in theoretical post-translational modifications. In this work, we found differences in antigenic proteins between both species, proteins that could be used for a further development of vaccines against N fowleri infection.
Collapse
Affiliation(s)
- Mara Gutiérrez-Sánchez
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Maria Maricela Carrasco-Yepez
- Laboratorio de Microbiología, Grupo CyMA, Unidad de Investigación Interdisciplinaria en Ciencias de la Salud y la Educación, Universidad Nacional Autónoma de México, UNAM FES Iztacala, Tlalnepantla, Mexico
| | - Jorge Herrera-Díaz
- Unidad de Servicios de Apoyo a la Investigación y la Industria, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Saul Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
2
|
Acanthamoeba castellanii cysts: new ultrastructural findings. Parasitol Res 2013; 112:1125-30. [PMID: 23319266 DOI: 10.1007/s00436-012-3261-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
During Acanthamoeba castellanii trophozoite-cysts differentiation, four morphological stages were identified by scanning electron microscopy: trophozoite, precyst, immature cysts, and mature cysts. Fluorescence microscopy reveals the presence of small cumulus of actin in the cytoplasm of precysts after treatment with rhodamine phalloidin. By the contrary, in mature cysts, fluorescence was not observed. However, when excystation was induced, large fluorescent patches were present. By transmission electron microscopy, encysting amebas showed small cytoplasmic vesicles containing fibrillar material, surrounded by a narrow area of thin fibrils. Similar appearance was observed in pseudopods and phagocytic invaginations. In addition, large aggregates of rod-shape elements, similar to the chromatoid bodies, described in other amebas, were present in the cytoplasm. These cysts presented large areas with orange fluorescence after treatment with acridine orange.
Collapse
|
3
|
Echauri-Espinosa RO, Callejas-Negrete OA, Roberson RW, Bartnicki-García S, Mouriño-Pérez RR. Coronin is a component of the endocytic collar of hyphae of Neurospora crassa and is necessary for normal growth and morphogenesis. PLoS One 2012; 7:e38237. [PMID: 22693603 PMCID: PMC3365027 DOI: 10.1371/journal.pone.0038237] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/01/2012] [Indexed: 01/02/2023] Open
Abstract
Coronin plays a major role in the organization and dynamics of actin in yeast. To investigate the role of coronin in a filamentous fungus (Neurospora crassa), we examined its subcellular localization using fluorescent proteins and the phenotypic consequences of coronin gene (crn-1) deletion in hyphal morphogenesis, Spitzenkörper behavior and endocytosis. Coronin-GFP was localized in patches, forming a subapical collar near the hyphal apex; significantly, it was absent from the apex. The subapical patches of coronin colocalized with fimbrin, Arp2/3 complex, and actin, altogether comprising the endocytic collar. Deletion of crn-1 resulted in reduced hyphal growth rates, distorted hyphal morphology, uneven wall thickness, and delayed establishment of polarity during germination; it also affected growth directionality and increased branching. The Spitzenkörper of Δcrn-1 mutant was unstable; it appeared and disappeared intermittently giving rise to periods of hyphoid-like and isotropic growth respectively. Uptake of FM4-64 in Δcrn-1 mutant indicated a partial disruption in endocytosis. These observations underscore coronin as an important component of F-actin remodeling in N. crassa. Although coronin is not essential in this fungus, its deletion influenced negatively the operation of the actin cytoskeleton involved in the orderly deployment of the apical growth apparatus, thus preventing normal hyphal growth and morphogenesis.
Collapse
Affiliation(s)
- Ramon O. Echauri-Espinosa
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Olga A. Callejas-Negrete
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Robert W. Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Salomon Bartnicki-García
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Rosa R. Mouriño-Pérez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
- * E-mail:
| |
Collapse
|
4
|
Sohn HJ, Kim JH, Shin MH, Song KJ, Shin HJ. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri. Parasitol Res 2010; 106:917-24. [PMID: 20143092 DOI: 10.1007/s00436-010-1760-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 01/13/2010] [Indexed: 01/09/2023]
Abstract
Naegleria fowleri destroys target cells by trogocytosis, a phagocytosis mechanism, and a process of piecemeal ingestion of target cells by food-cups. Phagocytosis is an actin-dependent process that involves polymerization of monomeric G-actin into filamentous F-actin. However, despite the numerous studies concerning phagocytosis, its role in the N. fowleri food-cup formation related with trogocytosis has been poorly reported. In this study, we cloned and characterized an Nf-actin gene to elucidate the role of Nf-actin gene in N. fowleri pathogenesis. The Nf-actin gene is composed of 1,128-bp and produced a 54.1-kDa recombinant protein (Nf-actin). The sequence identity was 82% with nonpathogenic Naegleria gruberi but has no sequence identity with other mammals or human actin gene. Anti-Nf-actin polyclonal antibody was produced in BALB/c mice immunized with recombinant Nf-actin. The Nf-actin was localized on the cytoplasm, pseudopodia, and especially, food-cup structure (amoebastome) in N. fowleri trophozoites using immunofluorescence assay. When N. fowleri co-cultured with Chinese hamster ovary cells, Nf-actin was observed to localize around on phagocytic food-cups. We also observed that N. fowleri treated with cytochalasin D as actin polymerization inhibitor or transfected with antisense oligomer of Nf-actin gene had shown the reduced ability of food-cup formation and in vitro cytotoxicity. Finally, it suggests that Nf-actin plays an important role in phagocytic activity of pathogenic N. fowleri.
Collapse
Affiliation(s)
- Hae-Jin Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | |
Collapse
|
5
|
Diniz MC, Costa MP, Pacheco ACL, Kamimura MT, Silva SC, Carneiro LDG, Sousa APL, Soares CEA, Souza CSF, de Oliveira DM. Actin-interacting and flagellar proteins in Leishmania spp.: Bioinformatics predictions to functional assignments in phagosome formation. Genet Mol Biol 2009; 32:652-65. [PMID: 21637533 PMCID: PMC3036044 DOI: 10.1590/s1415-47572009000300033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/25/2009] [Indexed: 11/22/2022] Open
Abstract
Several motile processes are responsible for the movement of proteins into and within the flagellar membrane, but little is known about the process by which specific proteins (either actin-associated or not) are targeted to protozoan flagellar membranes. Actin is a major cytoskeleton protein, while polymerization and depolymerization of parasite actin and actin-interacting proteins (AIPs) during both processes of motility and host cell entry might be key events for successful infection. For a better understanding the eukaryotic flagellar dynamics, we have surveyed genomes, transcriptomes and proteomes of pathogenic Leishmania spp. to identify pertinent genes/proteins and to build in silico models to properly address their putative roles in trypanosomatid virulence. In a search for AIPs involved in flagellar activities, we applied computational biology and proteomic tools to infer from the biological meaning of coronins and Arp2/3, two important elements in phagosome formation after parasite phagocytosis by macrophages. Results presented here provide the first report of Leishmania coronin and Arp2/3 as flagellar proteins that also might be involved in phagosome formation through actin polymerization within the flagellar environment. This is an issue worthy of further in vitro examination that remains now as a direct, positive bioinformatics-derived inference to be presented.
Collapse
Affiliation(s)
- Michely C Diniz
- Núcleo Tarcísio Pimenta de Pesquisa Genômica e Bioinformática, Universidade Estadual do Ceará, Fortaleza, CE Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sahasrabuddhe AA, Nayak RC, Gupta CM. Ancient Leishmania coronin (CRN12) is involved in microtubule remodeling during cytokinesis. J Cell Sci 2009; 122:1691-9. [DOI: 10.1242/jcs.044651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In general, coronins play an important role in actin-based processes, and are expressed in a variety of eukaryotic cells, including Leishmania. Here, we show that Leishmania coronin preferentially distributes to the distal tip during cytokinesis, and interacts with microtubules through a microtubule-based motor, kinesin K39. We further show that reduction in coronin levels by 40-50% in heterozygous coronin mutants results in generation of bipolar cells (25-30%), specifically in the log phase, owing to unregulated growth of the corset microtubules. Further analysis of bipolar cells revealed that the main cause of generation of bipolar cell morphology is the intrusion of the persistently growing corset microtubules into the other daughter cell corset from the opposite direction. This defect in cytokinesis, however, disappears upon episomal gene complementation. Additionally, our attempts to prepare homozygous mutants were unsuccessful, as only the aneuploid cells survive the selection process. These results indicate that coronin regulates microtubule remodeling during Leishmania cytokinesis and is essentially required for survival of these parasites in culture.
Collapse
Affiliation(s)
- Amogh A. Sahasrabuddhe
- Division of Molecular and Structural Biology, Central Drug Research Institute, M.G. Marg, Lucknow 226001, India
| | - Ramesh C. Nayak
- Division of Molecular and Structural Biology, Central Drug Research Institute, M.G. Marg, Lucknow 226001, India
| | - Chhitar M. Gupta
- Division of Molecular and Structural Biology, Central Drug Research Institute, M.G. Marg, Lucknow 226001, India
| |
Collapse
|
7
|
Xavier CP, Eichinger L, Fernandez MP, Morgan RO, Clemen CS. Evolutionary and functional diversity of coronin proteins. Subcell Biochem 2008; 48:98-109. [PMID: 18925374 DOI: 10.1007/978-0-387-09595-0_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter discusses various aspects of coronin phylogeny, structure and function that are of specific interest. Two subfamilies of ancient coronins of unicellular pathogens such as Entamoeba, Trypanosoma, Leishmania and Acanthamoeba as well as of Plasmodium, Babesia, and Trichomonas are presented in the first two sections. Their coronins generally bind to F-actin and apparently are involved in proliferation, locomotion and phagocytosis. However, there are so far no studies addressing a putative role of coronin in the virulence of these pathogens. The following section delineates genetic anomalies like the chimeric coronin-fusion products with pelckstrin homology and gelsolin domains that are found in amoeba. Moreover, most nonvertebrate metazoa appear to encode CRN8, CRN9 and CRN7 representatives (for these coronin symbols see Chapter 2), but in e.g., Drosophila melanogaster and Caenorhabditis elegans a CRN9 is missing. The forth section deals with the evolutionary expansion of vertebrate coronins. Experimental data on the F-actin binding CRN2 of Xenopus (Xcoronin) including a Cdc42/Rac interactive binding (CRIB) motif that is also present in other members of the coronin protein family are discussed. Xenopus laevis represents a case for the expansion of the seven vertebrate coronins due to tetraploidization events. Other examples for a change in the number of coronin paralogs are zebrafish and birds, but (coronin) gene duplication events also occurred in unicellular protozoa. The fifth section of this chapter briefly summarizes three different cellular processes in which CRN4/CORO1A is involved, namely actin-binding, superoxide generation and Ca(2+)-signaling and refers to the largely unexplored mammalian coronins CRN5/CORO2A and CRN6/CORO2B, the latter binding to vinculin. The final section discusses how, by unveiling the aspects of coronin function in organisms reported so far, one can trace a remarkable evolution and diversity in their individual roles anticipating a rather complex and intricate involvement of coronins in a variety of cellular processes.
Collapse
Affiliation(s)
- Charles-Peter Xavier
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne, Germany
| | | | | | | | | |
Collapse
|
8
|
Alafag JII, Moon EK, Hong YC, Chung DI, Kong HH. Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba. THE KOREAN JOURNAL OF PARASITOLOGY 2007; 44:331-41. [PMID: 17170575 PMCID: PMC2559136 DOI: 10.3347/kjp.2006.44.4.331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to 10 microM of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm.
Collapse
Affiliation(s)
- Joanna It-Itan Alafag
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | |
Collapse
|