1
|
Chowdhuri SP, Dhiman S, Das SK, Meena N, Das S, Kumar A, Das BB. Novel Pyrido[2',1':2,3]imidazo[4,5- c]quinoline Derivative Selectively Poisons Leishmania donovani Bisubunit Topoisomerase 1 to Inhibit the Antimony-Resistant Leishmania Infection in Vivo. J Med Chem 2023; 66:3411-3430. [PMID: 36823782 DOI: 10.1021/acs.jmedchem.2c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The unique bisubunit structure of Leishmania donovani topoisomerase 1B (LdTop1) is a potential drug target in the parasites unlike the monomeric Top1 from its human host counterpart. Here, we report the design, synthesis, and validation of a chimeric pyrido[2',1':2,3]imidazo[4,5-c]quinoline derivative (C17) as a novel antileishmanial agent that poisons topoisomerase 1-DNA covalent complexes (LdTop1cc) inside the parasites and inhibits Top1 religation activity both in the drug sensitive and antimony-resistant L. donovani clinical isolates. Importantly, the human Top1 is not sensitive to C17. Further, C17 overcomes the chemical instability of camptothecin (CPT) by generating persistent LdTop1cc-induced DNA breaks inside the parasites even after 12 h of drug removal. Intraperitoneal administration of C17 results in marked reduction of the Leishmania amastigotes from the infected spleen and liver of BALB/c mice. C17 confers a host protective immune-response up-regulating the Th1 cytokines facilitating parasite clearance which can be exploited for treating drug-resistant leishmaniasis.
Collapse
Affiliation(s)
- Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Shiv Dhiman
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031 Rajasthan, India
| | - Subhendu K Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031 Rajasthan, India
| | - Sonali Das
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031 Rajasthan, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
2
|
Silva-Silva JV, Moragas-Tellis CJ, Chagas MDSDS, de Souza PVR, de Souza CDSF, Hardoim DDJ, Taniwaki NN, Moreira DDL, Dutra Behrens M, Calabrese KDS, Almeida-Souza F. Antileishmanial Activity of Flavones-Rich Fraction From Arrabidaea chica Verlot (Bignoniaceae). Front Pharmacol 2021; 12:703985. [PMID: 34354593 PMCID: PMC8329660 DOI: 10.3389/fphar.2021.703985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
Acknowledging the need of identifying new compounds for the treatment of leishmaniasis, this study aimed to evaluate, from in vitro trials, the activity of flavones from Arrabidaea chica against L. amazonensis. The chromatographic profiles of the hydroethanolic extract and a flavone-rich fraction (ACFF) from A. chica were determined by high-performance liquid chromatography coupled with a diode-array UV-Vis detector (HPLC-DAD-UV) and electrospray ionization mass spectrometry in tandem (LC-ESI-MS-MS). The flavones luteolin (1) and apigenin (2), isolated from chromatographic techniques and identified by Nuclear Magnetic Resonance of 1H and 13C, were also quantified in ACFF, showing 190.7 mg/g and apigenin 12.4 mg/g, respectively. The other flavones were identified by comparing their spectroscopic data with those of the literature. The in vitro activity was assayed against promastigotes and intramacrophagic amastigote forms of L. amazonensis. Cytotoxicity tests were performed with peritoneal macrophages of BALB/c mice. Nitrite quantification was performed with Griess reagent. Ultrastructural investigations were obtained by transmission electron microscopy. Anti-Leishmania assays indicated that the IC50 values for ACFF, apigenin, and luteolin were obtained at 40.42 ± 0.10 and 31.51 ± 1.13 μg/mL against promastigotes, respectively. ACFF and luteolin have concentration-dependent cytotoxicity. ACFF and luteolin also inhibited the intra-macrophagic parasite (IC50 3.575 ± 1.13 and 11.78 ± 1.24 μg/mL, respectively), with a selectivity index of 11.44 for ACFF. Promastigotes exposed to ACFF and luteolin exhibited ultrastructural changes, such as intense cytoplasm vacuolization and mitochondrial swelling. These findings data evidence the antileishmanial action of flavone-rich fractions of A. chica against L. amazonensis, encouraging further studies.
Collapse
Affiliation(s)
- João Victor Silva-Silva
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carla Junqueira Moragas-Tellis
- Laboratory of Natural Products for Public Health, Pharmaceutical Techonology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria do Socorro Dos Santos Chagas
- Laboratory of Natural Products for Public Health, Pharmaceutical Techonology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Victor Ramos de Souza
- Laboratory of Natural Products for Public Health, Pharmaceutical Techonology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Student on Postgraduate Program in Translational Research in Drugs and Medicines, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Daiana de Jesus Hardoim
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Davyson de Lima Moreira
- Laboratory of Natural Products for Public Health, Pharmaceutical Techonology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Dutra Behrens
- Laboratory of Natural Products for Public Health, Pharmaceutical Techonology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Kátia da Silva Calabrese
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernando Almeida-Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Postgraduate in Animal Science, State University of Maranhão, São Luís, Brazil
| |
Collapse
|
3
|
|
4
|
Khanra S, Juin SK, Jawed JJ, Ghosh S, Dutta S, Nabi SA, Dash J, Dasgupta D, Majumdar S, Banerjee R. In vivo experiments demonstrate the potent antileishmanial efficacy of repurposed suramin in visceral leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0008575. [PMID: 32866156 PMCID: PMC7491717 DOI: 10.1371/journal.pntd.0008575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 09/15/2020] [Accepted: 07/07/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Treatment failure and resistance to the commonly used drugs remains a major obstacle for successful chemotherapy against visceral leishmaniasis (VL). Since the development of novel therapeutics involves exorbitant costs, the effectiveness of the currently available antitrypanosomatid drug suramin has been investigated as an antileishmanial, specifically for VL,in vitro and in animal model experiments. METHODOLOGY/PRINCIPAL Leishmania donovani promastigotes were treated with suramin and studies were performed to determine the extent and mode of cell mortality, cell cycle arrest and other in vitro parameters. In addition, L. donovani infected BALB/c mice were administered suramin and a host of immunological parameters determined to estimate the antileishmanial potency of the drug. Finally, isothermal titration calorimetry (ITC) and enzymatic assays were used to probe the interaction of the drug with one of its putative targets namely parasitic phosphoglycerate kinase (LmPGK). FINDINGS The in vitro studies revealed the potential efficacy of suramin against the Leishmania parasite. This observation was further substantiated in the in vivo murine model, which demonstrated that upon suramin administration, the Leishmania infected BALB/c mice were able to reduce the parasitic burden and also generate the host protective immunological responses. ITC and enzyme assays confirmed the binding and consequent inhibition of LmPGK due to the drug. CONCLUSIONS/SIGNIFICANCE All experiments affirmed the efficacy of suramin against L. donovani infection, which could possibly lead to its inclusion in the repertoire of drugs against VL.
Collapse
Affiliation(s)
- Supriya Khanra
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata India
| | | | - Junaid Jibran Jawed
- School of Biotechnology, Department of Life Sciences, Presidency University-New Campus, Kolkata, India
| | - Sweta Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Shreyasi Dutta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, India
| | - Shaik Abdul Nabi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Jyotirmayee Dash
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Dipak Dasgupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, India
| | | | - Rahul Banerjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| |
Collapse
|
5
|
Staderini M, Piquero M, Abengózar MÁ, Nachér-Vázquez M, Romanelli G, López-Alvarado P, Rivas L, Bolognesi ML, Menéndez JC. Structure-activity relationships and mechanistic studies of novel mitochondria-targeted, leishmanicidal derivatives of the 4-aminostyrylquinoline scaffold. Eur J Med Chem 2019; 171:38-53. [DOI: 10.1016/j.ejmech.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
|
6
|
Styshova ON, Popov AM, Artyukov AA, Klimovich AA. Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp Ther Med 2017; 13:1651-1659. [PMID: 28565749 DOI: 10.3892/etm.2017.4217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
The present review analyzed the recent experimental studies of the alleviating activity of main constituents of the polyphenol complex from seagrasses of the genus Zostera, namely rosmarinic acid, luteolin and its sulfated derivatives, on carbohydrate and lipid metabolism disorders. A number of studies by our group and others, in which various experimental models of diabetes and hyperlipidemia were used, show a therapeutic action of the polyphenol complex and the abovementioned phenolic constituents, when applied separately and in combination. Based on the analysis of the results of these studies, the probable mechanisms of the therapeutic action of these compounds in diabetes and hyperlipidemia were proposed.
Collapse
Affiliation(s)
- Olga Nikolaevna Styshova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Alexander Michailovich Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.,School of Natural Sciences, Far Eastern Federal University, Vladivostok 690000, Russia
| | - Alexander Alekseevish Artyukov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Anna Anatolievna Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
7
|
Navrátilová A, Nešuta O, Vančatová I, Čížek A, Varela-M RE, López-Abán J, Villa-Pulgarin JA, Mollinedo F, Muro A, Žemličková H, Kadlecová D, Šmejkal K. C-Geranylated flavonoids from Paulownia tomentosa fruits with antimicrobial potential and synergistic activity with antibiotics. PHARMACEUTICAL BIOLOGY 2016; 54:1398-1407. [PMID: 26789098 DOI: 10.3109/13880209.2015.1103755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context C-6-Geranylated flavonoids possess promising biological activities. These substances could be a source of lead compounds for the development of therapeutics. Objective The study was designed to evaluate their antibacterial and antileishmanial activity. Materials and methods C-6-Geranylated flavanones were tested in micromolar concentrations against promastigote forms of Leishmania brazilensis, L. donovani, L. infantum, and L. panamensis against methicillin-resistant Staphylococcus aureus (MRSA); and synergistic potential with antibiotics was analyzed. IC50 values (after 72 h) were calculated and compared with that of miltefosine. Flow cytometry and DNA fragmentation analysis were used the mechanism of the effect. Geranylated flavanones or epigallocatechin gallate were combined with oxacillin, tetracycline, and ciprofloxacin, and the effects of these two-component combinations were evaluated. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) were established (after 24 h), the synergy was measured by the checkerboard titration technique, and the sums of the fractional inhibitory concentrations (∑FICs) were computed. Results 3'-O-Methyl-5'-O-methyldiplacone and 3'-O-methyldiplacone showed good antileishmanial activities (IC50 8-42 μM). 3'-O-Methyl-5'-hydroxydiplacone activates the apoptotic death at leishmanias, the effect of 3'-O-methyl-5'-O-methyldiplacone has another mechanism. The test of the antibacterial activity showed good effects of 3'-O-methyldiplacol and mimulone against MRSA (MIC 2-16 μg/mL), and in six cases, the results showed synergistic effects when combined with oxacillin. Synergistic effects were also found for the combination of epigallocatechin gallate with tetracycline or oxacillin. Conclusion This work demonstrates anti-MRSA and antileishmanial potential of geranylated flavanones and uncovers their promising synergistic activities with antibiotics. In addition, the mechanism of antileishmanial effect is proposed.
Collapse
Affiliation(s)
- Alice Navrátilová
- a Department of Natural Drugs , Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - Ondřej Nešuta
- b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Irena Vančatová
- a Department of Natural Drugs , Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - Alois Čížek
- c Department of Infectious Diseases and Microbiology , University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
- d CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - Ruben E Varela-M
- e Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca , Salamanca , Spain
| | - Julio López-Abán
- f Laboratorio de Immunología y Parasitología Molecular , CIETUS, Facultad de Farmacia, Universidad de Salamanca , Salamanca ; Spain
| | - Janny A Villa-Pulgarin
- e Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca , Salamanca , Spain
| | - Faustino Mollinedo
- e Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca , Salamanca , Spain
| | - Antonio Muro
- f Laboratorio de Immunología y Parasitología Molecular , CIETUS, Facultad de Farmacia, Universidad de Salamanca , Salamanca ; Spain
| | - Helena Žemličková
- g National Reference Laboratory for Antibiotics , National Institute of Public Health , Prague , Czech Republic
| | - Daniela Kadlecová
- a Department of Natural Drugs , Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - Karel Šmejkal
- a Department of Natural Drugs , Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
- h Department of Molecular Biology and Pharmaceutical Biotechnology , Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| |
Collapse
|
8
|
Yan M, Liu Z, Yang H, Li C, Chen H, Liu Y, Zhao M, Zhu Y. Luteolin decreases the UVA‑induced autophagy of human skin fibroblasts by scavenging ROS. Mol Med Rep 2016; 14:1986-92. [PMID: 27430964 PMCID: PMC4991762 DOI: 10.3892/mmr.2016.5517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
Abstract
Luteolin (LUT) is a flavone, which is universally present as a constituent of traditional Chinese herbs, and certain vegetables and spices, and has been demonstrated to exhibit potent radical scavenging and cytoprotective properties. Although LUT has various beneficial effects on health, the effects of LUT on the protection of skin remain to be fully elucidated. The present study investigated whether LUT can protect human skin fibroblasts (HSFs) from ultraviolet (UV) A irradiation. It was found that, following exposure to different doses of UVA irradiation, the HSFs exhibited autophagy, as observed by fluorescence and transmission electron microscopy, and reactive oxygen species (ROS) bursts, analyzed by flow cytometry, to differing degrees. Following incubation with micromolar concentrations of LUT, ROS production decreased and autophagy gradually declined. In addition, the expression of hypoxia-inducible factor-1α and the classical autophagy-associated proteins, LC3 and Beclin 1 were observed by western blotting. Western blot analysis showed that the expression levels of HIF-1α, LC3-II and Beclin 1 gradually decreased in the UVA-irradiated HSFs following treatment with LUT. These data indicated that UVA-induced autophagy was mediated by ROS, suggesting the possibility of resistance against UV by certain natural antioxidants, including LUT.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Zhongrong Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Huilan Yang
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Cuihua Li
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Hulin Chen
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yan Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Minling Zhao
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yingjie Zhu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
9
|
Singh R, Purkait B, Abhishek K, Saini S, Das S, Verma S, Mandal A, Ghosh AK, Ansari Y, Kumar A, Sardar AH, Kumar A, Parrack P, Das P. Universal minicircle sequence binding protein of Leishmania donovani regulates pathogenicity by controlling expression of cytochrome-b. Cell Biosci 2016; 6:13. [PMID: 26889377 PMCID: PMC4756535 DOI: 10.1186/s13578-016-0072-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmania contains a concatenated mitochondrial DNA, kDNA. Universal minicircle sequence binding protein (UMSBP), a mitochondrial protein, initiates kDNA replication by binding with a conserved universal minicircle sequence (UMS) of kDNA. Here, we describe first time in L. donovani the regulation of DNA binding activity of UMSBP and the role of UMSBP in virulence. METHODS Insilco and EMSA study were performed to show UMS-binding activity of UMSBP. Tryparedoxin(TXN)-tryparedoxin peroxidase(TXNPx) assay as well as co-overexpression of cytochrome-b5 reductase-like protein (CBRL) and tryparedoxin in L. donovani were done to know the regulation of DNA binding activity of UMSBP. Knockout and episomal-expression constructs of UMSBP were transfected in L. donovani. The cell viability assay and immunofluorescence study to know the status of kDNA were performed. Macrophages were infected with transfected parasites. mRNA level of cytochrome b, activity of complex-III, intracellular ATP level of both transfected promastigotes and amastigotes as well as ROS concentration and the level of apoptosis of transfected promastigotes were measured. Level of oxidative phosphorylation of both transfected and un-transfected amastigotes were compared. Burden of transfected amastigotes in both macrophages and BALB/c mice were measured. RESULTS L. donovani UMSBP is capable of binding with UMS, regulated by redox through mitochondrial enzymes, TXN, TXNPx and CBRL. Depletion of UMSBP (LdU(-/-)) caused kDNA loss, which decreased cytochrome-b expression [component of complex-III of electron transport chain (ETC)] and leads to the disruption of complex-III activity, decreased ATP generation, increased ROS level and promastigotes exhibited apoptosis like death. Interestingly, single knockout of UMSBP (LdU(-/+)) has no effect on promastigotes survival. However, single knockout in intracellular amastigotes demonstrate loss of mRNA level of cytochrome-b, disruption in the activity of complex-III and reduced production of ATP in amastigotes than wild type. This process interfere with the oxidative-phosphorylation and thereby completely inhibit the intracellular proliferation of LdU(-/+) amastigotes in human macrophages and in BALB/c mice. Amastigotes proliferation was restored as wild type after episomal expression of LdUMSBP in LdU(-/+) parasites (LdU(-/+)AB). CONCLUSION The LdUMSBP regulates leishmanial mitochondrial respiration and pathogenesis. So, LdUMSBP may be an attractive target for rational drug designing and LdU(-/+) parasites could be considered as a live attenuated vaccine candidate against visceral leishmaniasis.
Collapse
Affiliation(s)
- Ruby Singh
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Bidyut Purkait
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Kumar Abhishek
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Savita Saini
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844101 India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Patna, 801105 India
| | - Sudha Verma
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Abhishek Mandal
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Ayan Kr Ghosh
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Yousuf Ansari
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Ashish Kumar
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Abul H Sardar
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Ajay Kumar
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Pradeep Parrack
- Department of Biochemistry, Bose Institute, Kolkata, 700009 India
| | - Pradeep Das
- Department of Molecular Parasitology and Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research (ICMR), Agamkuan, Patna, Bihar 800007 India
| |
Collapse
|
10
|
Popov AM, Krivoshapko ON, Klimovich AA, Artyukov AA. [Biological activity and mechanisms of therapeutic action of rosmarinic acid, luteolin and its sulphated derivatives]. BIOMEDITSINSKAIA KHIMIIA 2016; 62:22-30. [PMID: 26973183 DOI: 10.18097/pbmc20166201022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers recent experimental studies of biological activity and mechanisms of therapeutic action of rosmarinic acid, luteolin and its sulfated derivatives in diseases associated with disorders of carbohydrate and lipid metabolism. Particular attention is focused on the results of studies showing a high therapeutic potential of these phenolic compounds in their prophylactic and therapeutic use at experimental modeling of type 2 diabetes and hyperlipidemia. Based on the analysis of our results and the literature data putative mechanisms of therapeutic action of rosmarinic acid, luteolin and its sulfated derivatives have been proposed.
Collapse
Affiliation(s)
- A M Popov
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia; Far Eastern Federal University, Vladivostok, Russia
| | - O N Krivoshapko
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - A A Klimovich
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - A A Artyukov
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
11
|
Mechanisms of action of substituted β-amino alkanols on Leishmania donovani. Antimicrob Agents Chemother 2014; 59:1211-8. [PMID: 25487805 DOI: 10.1128/aac.04003-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is the protozoan disease second in importance for human health, superseded only by malaria; however, the options for chemotherapeutic treatment are increasingly limited due to drug resistance and toxicity. Under this perspective, a quest for new chemical compounds is urgently needed. An N-substituted 2-aminoalkan-1-ol scaffold has been shown to be a versatile scaffold for antiparasitic activity. Knowledge about its mechanism of action is still rather limited. In this work, we endeavored to define the leishmanicidal profile of such β-amino alkanol derivatives using a set of 15 N-mono- and disubstituted surrogates, tested on Leishmania donovani promastigotes and intracellular amastigotes. The best compound (compound 5), 2-ethylaminododecan-1-ol, had a 50% effective concentration (EC50) of 0.3 μM and a selectivity index of 72 for infected THP-1 cells and was selected for further elucidation of its leishmanicidal mechanism. It induced fast depletion of intracellular ATP content in promastigotes in the absence of vital dye intracellular entry, ruling out plasma membrane permeabilization as its origin. Confocal and transmission electron microscopy analyses showed that compound 5 induced severe mitochondrial swelling and vesiculation. Polarographic analysis using an oxygen electrode demonstrated that complex II of the respiratory chain (succinate reductase) was strongly inhibited by compound 5, identifying this complex as one of the primary targets. Furthermore, for other β-amino alkanols whose structures differed subtly from that of compound 5, plasma membrane permeabilization or interference with membrane traffic was also observed. In all, N-substituted β-amino alkanols were shown as appealing leishmanicidal candidates deserving further exploration.
Collapse
|
12
|
Elmahallawy EK, Jiménez-Aranda A, Martínez AS, Rodriguez-Granger J, Navarro-Alarcón M, Gutiérrez-Fernández J, Agil A. Activity of melatonin against Leishmania infantum promastigotes by mitochondrial dependent pathway. Chem Biol Interact 2014; 220:84-93. [PMID: 24973643 DOI: 10.1016/j.cbi.2014.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
Visceral leishmaniasis, a potentially fatal disease, remains a major international health problem. Only a limited number of effective antileishmanial agents are available for chemotherapy, and many of them are expensive with severe side effects or have a markedly reduced effectiveness due to the development of drug resistance. Hence, there is a genuine need to develop a novel effective and less toxic antileishmanial drug. Melatonin, a neurohormone found in animals, plants, and microbes, can participate in various biological and physiological functions. Several in vitro or in vivo studies have reported the inhibitory effect of melatonin against many parasites via various mechanisms, including modulation of intracellular concentrations of calcium in the parasite and/or any other suggested mechanism. Importantly, many of available antileishmanial drugs have been reported to exert their effects by disrupting calcium homeostasis in the parasite. The objective of the present study was to test the efficacy of exogenous melatonin against Leishmania infantum promastigotes in vitro. Interestingly, melatonin not only demonstrated a significant antileishmanial activity of against promastigote viability in tested cultures but was also accompanied by an alteration of the calcium homeostasis of parasite mitochondrion, represented by earlier mitochondrial permeability transition pore opening, and by changes in some mitochondrial parameters are critical to parasite survival. These pioneering findings suggest that melatonin may be a candidate for the development of novel effective antileishmanial agents either alone or in associations with other drugs.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Microbiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Zoonotic diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Aroa Jiménez-Aranda
- Department of Pharmacology and Neurosciences Institute (CIBM), Faculty of Medicine, University of Granada, Granada, Spain
| | | | - Javier Rodriguez-Granger
- Service of Microbiology and Parasitology, University Hospital Virgen de las Nieves, Granada, Spain
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, Granada, Spain
| | | | - Ahmad Agil
- Department of Pharmacology and Neurosciences Institute (CIBM), Faculty of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
13
|
Singh N, Mishra BB, Bajpai S, Singh RK, Tiwari VK. Natural product based leads to fight against leishmaniasis. Bioorg Med Chem 2013; 22:18-45. [PMID: 24355247 DOI: 10.1016/j.bmc.2013.11.048] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 11/16/2022]
Abstract
The growing incidence of parasitic resistance against generic pentavalent antimonials, specifically for visceral disease in Indian subcontinent, is a serious issue in Leishmania control. Notwithstanding the two treatment alternatives, that is amphotericin B and miltefosine are being effectively used but their high cost and therapeutic complications limit their use in endemic areas. In the absence of a vaccine candidate, identification, and characterization of novel drugs and targets is a major requirement of leishmanial research. This review describes current drug regimens, putative drug targets, numerous natural products that have shown promising antileishmanial activity alongwith some key issues and strategies for future research to control leishmaniasis worldwide.
Collapse
Affiliation(s)
- Nisha Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surabhi Bajpai
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh K Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Vinod K Tiwari
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Ribeiro GA, Cunha-Júnior EF, Pinheiro RO, da-Silva SAG, Canto-Cavalheiro MM, da Silva AJM, Costa PRR, Netto CD, Melo RCN, Almeida-Amaral EE, Torres-Santos EC. LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. J Antimicrob Chemother 2013; 68:789-99. [PMID: 23288404 DOI: 10.1093/jac/dks498] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The pterocarpanquinone LQB-118, previously demonstrated to be effective in vivo via oral delivery, was investigated for its mechanism in selective parasite killing. METHODS Oxidative stress in Leishmania amazonensis was analysed by evaluating reactive oxygen species (ROS) production (2',7'-dichlorodihydrofluorescein diacetate) and the loss of mitochondrial membrane potential (ΔΨm) using rhodamine, JC-1 and MitoCapture. Ultrastructural analysis was performed using transmission electron microscopy (TEM). DNA fragmentation was evaluated using terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). RESULTS Treatment with LQB-118 induced ROS production in the promastigotes of L. amazonensis in a concentration-dependent manner for the first 4 h and was sustained for 24 h. TEM analysis revealed several alterations typical of apoptosis. Promastigotes presented a reduction of ΔΨm after 24 h of incubation with 2.5 μM (18.7%), 5 μM (63.7%) or 10 μM (70.7%) LQB-118. A sub-G0/G1 cell cycle phenotype was observed in 21%-83% of the promastigotes incubated with 1.25-10 μM LQB-118. Concentration-dependent DNA fragmentation was observed in promastigotes treated with 2.5-10 μM LQB-118, and selective DNA fragmentation was observed in intracellular amastigotes after 72 h with 2.5 μM treatment. CONCLUSIONS Our results suggest that LQB-118 selectively induces ROS-triggered and mitochondria-dependent apoptosis in this parasite.
Collapse
Affiliation(s)
- Grazielle Alves Ribeiro
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tomatidine promotes the inhibition of 24-alkylated sterol biosynthesis and mitochondrial dysfunction in Leishmania amazonensis promastigotes. Parasitology 2012; 139:1253-65. [PMID: 22716777 DOI: 10.1017/s0031182012000522] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Leishmaniasis is a set of clinically distinct infectious diseases caused by Leishmania, a genus of flagellated protozoan parasites, that affects ~12 million people worldwide, with ~2 million new infections annually. Plants are known to produce substances to defend themselves against pathogens and predators. In the genus Lycopersicon, which includes the tomato, L. esculentum, the main antimicrobial compound is the steroidal glycoalkaloid α-tomatine. The loss of the saccharide side-chain of tomatine yields the aglycone tomatidine. In the present study, we investigated the effects of tomatidine on the growth, mitochondrial membrane potential, sterol metabolism, and ultrastructure of Leishmania amazonensis promastigotes. Tomatidine (0·1 to 5 μM) inhibited parasite growth in a dose-dependent manner (IC(50)=124±59 nM). Transmission electron microscopy revealed lesions in the mitochondrial ultrastructure and the presence of large vacuoles and lipid storage bodies in the cytoplasm. These structural changes in the mitochondria were accompanied by an effective loss of mitochondrial membrane potential and a decrease in ATP levels. An analysis of the neutral lipid content revealed a large depletion of endogenous 24-alkylated sterols such as 24-methylene-cholesta-5, 7-dien-3β-ol (5-dehydroepisterol), with a concomitant accumulation of cholesta-8, 24-dien-3β-ol (zymosterol), which implied a perturbation in the cellular lipid content. These results are consistent with an inhibition of 24-sterol methyltransferase, an important enzyme responsible for the methylation of sterols at the 24 position, which is an essential step in the production of ergosterol and other 24-methyl sterols.
Collapse
|
16
|
Mitochondria and Trypanosomatids: Targets and Drugs. Pharm Res 2011; 28:2758-70. [DOI: 10.1007/s11095-011-0586-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/07/2011] [Indexed: 01/20/2023]
|
17
|
Smirlis D, Duszenko M, Ruiz AJ, Scoulica E, Bastien P, Fasel N, Soteriadou K. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors 2010; 3:107. [PMID: 21083891 PMCID: PMC3136144 DOI: 10.1186/1756-3305-3-107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/17/2010] [Indexed: 11/25/2022] Open
Abstract
Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.
Collapse
Affiliation(s)
- Despina Smirlis
- Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 127 Bas, Sofias Ave,, 11521 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
18
|
Jiménez-Ruiz A, Alzate JF, Macleod ET, Lüder CGK, Fasel N, Hurd H. Apoptotic markers in protozoan parasites. Parasit Vectors 2010; 3:104. [PMID: 21062457 PMCID: PMC2993696 DOI: 10.1186/1756-3305-3-104] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/09/2010] [Indexed: 12/25/2022] Open
Abstract
The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
Collapse
Affiliation(s)
- Antonio Jiménez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
19
|
Gachet MS, Schühly W. Jacaranda--an ethnopharmacological and phytochemical review. JOURNAL OF ETHNOPHARMACOLOGY 2009; 121:14-27. [PMID: 19010407 DOI: 10.1016/j.jep.2008.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/10/2008] [Accepted: 10/15/2008] [Indexed: 05/27/2023]
Abstract
The genus Jacaranda, an important representative of the tribe Tecomeae in the family Bignoniaceae, is interesting from both biological and chemical perspectives. In this review, a contemporary summary of biological and pharmacological research on Jacaranda species will be presented and critically evaluated. Significant findings in the treatment of protozoa-caused diseases as well as of skin illnesses have been presented in ethnobotanical reports and recent studies were performed on crude extracts for certain Jacaranda species. Jacaranone, the most important constituent isolated is known to possess anti-cancer activity. Recently, high cutaneous toxicity together with moderate activity against leishmaniasis was described. Very few additional data are available on the biological activities and cytotoxicity of pure compounds from Jacaranda. Thirteen of the forty-nine distinguished species of Jacaranda have been reported in scientific literature as ethnobotanically used or phytochemically investigated. However, information about a chemical profile is available only for six species. The following article gives a critical assessment of the literature to date and aims to show that the pharmaceutical potential of this genus has been underestimated and deserves closer attention.
Collapse
Affiliation(s)
- María Salomé Gachet
- Institute of Pharmaceutical Sciences, Pharmacognosy, Karl-Franzens-University Graz, Universitätsplatz 4/I, 8010 Graz, Austria
| | | |
Collapse
|
20
|
Roy A, Ganguly A, BoseDasgupta S, Das BB, Pal C, Jaisankar P, Majumder HK. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3'-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Mol Pharmacol 2008; 74:1292-307. [PMID: 18703668 DOI: 10.1124/mol.108.050161] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are the principal site for the generation of cellular ATP by oxidative phosphorylation. F0F1-ATP synthase, a complex V of the electron transport chain, is an important constituent of mitochondria-dependent signaling pathways involved in apoptosis. In the present study, we have shown for the first time that 3,3'-diindolylmethane (DIM), a DNA topoisomerase I poison, inhibits mitochondrial F0F1-ATP synthase of Leishmania donovani and induces programmed cell death (PCD), which is a novel insight into the mechanism in protozoan parasites. DIM-induced inhibition of F0F1-ATP synthase activity causes depletion of mitochondrial ATP levels and significant stimulation of mitochondrial reactive oxygen species (ROS) production, followed by depolarization of mitochondrial membrane potential (DeltaPsi(m)). Because DeltaPsi(m) is the driving force for mitochondrial ATP synthesis, loss of DeltaPsi(m) results in depletion of cellular ATP level. The loss of DeltaPsi(m) causes the cellular ROS generation and in turn leads to the oxidative DNA lesions followed by DNA fragmentation. In contrast, loss of DeltaPsi(m) leads to release of cytochrome c into the cytosol and subsequently activates the caspase-like proteases, which lead to oligonucleosomal DNA cleavage. We have also shown that mitochondrial DNA-depleted cells are insensitive to DIM to induce PCD. Therefore, mitochondria are necessary for cytotoxicity of DIM in kinetoplastid parasites. Taken together, our study indicates for the first time that DIM-induced mitochondrial dysfunction by inhibition of F0F1-ATP synthase activity leads to PCD in Leishmania spp. parasites, which could be exploited to develop newer potential therapeutic targets.
Collapse
Affiliation(s)
- Amit Roy
- Molecular Parasitology Laboratory, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Rd., Kolkata-700032, India
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Luteolin, 3',4',5,7-tetrahydroxyflavone, is a common flavonoid that exists in many types of plants including fruits, vegetables, and medicinal herbs. Plants rich in luteolin have been used in Chinese traditional medicine for treating various diseases such as hypertension, inflammatory disorders, and cancer. Having multiple biological effects such as anti-inflammation, anti-allergy and anticancer, luteolin functions as either an antioxidant or a pro-oxidant biochemically. The biological effects of luteolin could be functionally related to each other. For instance, the anti-inflammatory activity may be linked to its anticancer property. Luteolin's anticancer property is associated with the induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis. Furthermore, luteolin sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways such as phosphatidylinositol 3'-kinase (PI3K)/Akt, nuclear factor kappa B (NF-kappaB), and X-linked inhibitor of apoptosis protein (XIAP), and stimulating apoptosis pathways including those that induce the tumor suppressor p53. These observations suggest that luteolin could be an anticancer agent for various cancers. Furthermore, recent epidemiological studies have attributed a cancer prevention property to luteolin. In this review, we summarize the progress of recent research on luteolin, with a particular focus on its anticancer role and molecular mechanisms underlying this property of luteolin.
Collapse
Affiliation(s)
- Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., SE, Albuquerque, NM 87108, USA.
| | | | | | | |
Collapse
|
22
|
Singh G, Dey CS. Induction of apoptosis-like cell death by pentamidine and doxorubicin through differential inhibition of topoisomerase II in arsenite-resistant L. donovani. Acta Trop 2007; 103:172-85. [PMID: 17655815 DOI: 10.1016/j.actatropica.2007.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 06/07/2007] [Accepted: 06/11/2007] [Indexed: 11/29/2022]
Abstract
The current study has been undertaken to investigate the sensitivity of the topoisomerase II (topo II) of wild type (Ld-Wt) and arsenite-resistant (Ld-As20) L. donovani to an anti-leishmanial agent pentamidine and an anti-cancer drug doxorubicin. We demonstrate that the cross resistance to pentamidine and doxorubicin in Ld-As20, was in part implicated through differential inhibition of topo II in Ld-Wt and Ld-As20. Further, the treatment of promastigotes at drug concentrations inhibiting 50% of topo II activity inflicted a regulated cell death sharing several apoptotic features like externalization of phosphatidylserine, loss of mitochondrial membrane potential, cytochrome C release into the cytosol, activation of cellular proteases and DNA fragmentation. The cytotoxic potential of pentamidine and doxorubicin in L. donovani has been shown to be mediated through topoisomerase II inhibition and results in inciting programmed cell death process.
Collapse
Affiliation(s)
- Gaganmeet Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | | |
Collapse
|
23
|
Sen N, Banerjee B, Gupta SS, Das BB, Ganguly A, Majumder HK. Leishmania donovani: dyskinetoplastid cells survive and proliferate in the presence of pyruvate and uridine but do not undergo apoptosis after treatment with camptothecin. Exp Parasitol 2006; 115:215-9. [PMID: 17027973 DOI: 10.1016/j.exppara.2006.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 07/27/2006] [Accepted: 08/05/2006] [Indexed: 11/24/2022]
Abstract
We have shown that treatment with luteolin in leishmanial cells causes loss of mt-DNA and induces apoptosis through mitochondria dependent pathway [Sen, N., Das, B.B., Ganguly, A., Banerjee, B., Sen, T., Majumder, H.K., 2006. Leishmania donovani: intracellular ATP level regulates apoptosis-like death in luteolin induced dyskinetoplastid cells. Experimental Parasitology, in press]. Here, we report that mitochondrial DNA depleted leishmanial cells require exogenous sources of pyruvate and uridine to survive and proliferate. The presence of pyruvate and uridine in a growing media help them to produce sufficient amount of glycolytic ATP to maintain the mitochondrial membrane potential in the absence of their functional ETC. Treatment of wild type cells with CPT causes generation of ROS that leads to apoptosis. But unlike the normal cells ROS was not generated in these mt-DNA depleted cells after treatment with CPT. Taken together we have shown for the first time that dyskinetoplastid cells are auxotrophic for pyruvate and uridine and apoptosis cannot be induced in these cells in the presence of CPT. Therefore, the presence of mitochondrial DNA is absolutely necessary for the cytotoxicity of CPT in kinetoplastid parasites.
Collapse
Affiliation(s)
- Nilkantha Sen
- Division of Molecular Parasitology, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | | | |
Collapse
|