1
|
Rojas-Palomino J, Gómez-Restrepo A, Salinas-Restrepo C, Segura C, Giraldo MA, Calderón JC. Electrophysiological evaluation of the effect of peptide toxins on voltage-gated ion channels: a scoping review on theoretical and methodological aspects with focus on the Central and South American experience. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230048. [PMID: 39263598 PMCID: PMC11389830 DOI: 10.1590/1678-9199-jvatitd-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/02/2024] [Indexed: 09/13/2024] Open
Abstract
The effect of peptide toxins on voltage-gated ion channels can be reliably assessed using electrophysiological assays, such as the patch-clamp technique. However, much of the toxinological research done in Central and South America aims at purifying and characterizing biochemical properties of the toxins of vegetal or animal origin, lacking electrophysiological approaches. This may happen due to technical and infrastructure limitations or because researchers are unfamiliar with the techniques and cellular models that can be used to gain information about the effect of a molecule on ion channels. Given the potential interest of many research groups in the highly biodiverse region of Central and South America, we reviewed the most relevant conceptual and methodological developments required to implement the evaluation of the effect of peptide toxins on mammalian voltage-gated ion channels using patch-clamp. For that, we searched MEDLINE/PubMed and SciELO databases with different combinations of these descriptors: "electrophysiology", "patch-clamp techniques", "Ca2+ channels", "K+ channels", "cnidarian venoms", "cone snail venoms", "scorpion venoms", "spider venoms", "snake venoms", "cardiac myocytes", "dorsal root ganglia", and summarized the literature as a scoping review. First, we present the basics and recent advances in mammalian voltage-gated ion channel's structure and function and update the most important animal sources of channel-modulating toxins (e.g. cnidarian and cone snails, scorpions, spiders, and snakes), highlighting the properties of toxins electrophysiologically characterized in Central and South America. Finally, we describe the local experience in implementing the patch-clamp technique using two models of excitable cells, as well as the participation in characterizing new modulators of ion channels derived from the venom of a local spider, a toxins' source less studied with electrophysiological techniques. Fostering the implementation of electrophysiological methods in more laboratories in the region will strengthen our capabilities in many fields, such as toxinology, toxicology, pharmacology, natural products, biophysics, biomedicine, and bioengineering.
Collapse
Affiliation(s)
| | - Alejandro Gómez-Restrepo
- Physiology and Biochemistry Research Group -PHYSIS, Faculty of
Medicine, University of Antioquia, Medellín, Colombia
| | - Cristian Salinas-Restrepo
- Toxinology, Therapeutic and Food Alternatives Research Group,
Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín,
Colombia
| | - César Segura
- Malaria Group, Faculty of Medicine, University of Antioquia,
Medellín, Colombia
| | - Marco A. Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia,
Medellín, Colombia
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group -PHYSIS, Faculty of
Medicine, University of Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Jiménez AV, Cabezas DCO, Delay M, Gómez IG, Camacho M. Acoustophoretic Motion of Leishmania spp. Parasites. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1202-1214. [PMID: 35351318 DOI: 10.1016/j.ultrasmedbio.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The analysis of cell motion in an acoustic field is of interest as it can lead to new methods of cell separation, isolation and manipulation for diagnosis and treatment of diseases. Studies of the motion of different species of Leishmania parasites during exposure to ultrasonic standing waves in a microfluidic device allowed identification of acoustic responses of these parasites in their promastigote and amastigote forms. Both forms exhibited a positive acoustic contrast factor and were driven toward the pressure node established in the center of the channel by the acoustically induced radiation force (FR). Promastigotes experience calculated FR amplitudes one order of magnitude larger than those experienced by amastigotes because of the measured differences in volume. The aggregates formed at the pressure node have distinct shapes and stability conditions, for both promastigotes and amastigotes.
Collapse
Affiliation(s)
- Abelino Vargas Jiménez
- Universidad Nacional de Colombia, Bogotá, Colombia; Centro Internacional de Física (CIF), Laboratorio de Biofísica, Grupo de Biofísica y Biología de Membranas, Bogota, Colombia; Universidad de la Salle, Departamento de Ciencias Básicas, Bogotá, Colombia.
| | - Diana Carolina Ochoa Cabezas
- Centro Internacional de Física (CIF), Laboratorio de Biofísica, Grupo de Biofísica y Biología de Membranas, Bogota, Colombia; Universidad de la Salle, Departamento de Ciencias Básicas, Bogotá, Colombia
| | | | - Itziar González Gómez
- Concejo Superior de Investigaciones Científicas (CSIC), Instituto de Tecnologías Físicas y de la Información (ITEFI), Grupo de resonadores ultrasónicos para cavitacián y micromanipulacián (RESULT), Madrid, Spain
| | - Marcela Camacho
- Universidad Nacional de Colombia, Bogotá, Colombia; Centro Internacional de Física (CIF), Laboratorio de Biofísica, Grupo de Biofísica y Biología de Membranas, Bogota, Colombia
| |
Collapse
|
3
|
Gezelle J, Saggu G, Desai SA. Promises and Pitfalls of Parasite Patch-clamp. Trends Parasitol 2021; 37:414-429. [PMID: 33640269 DOI: 10.1016/j.pt.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
Protozoan parasites acquire essential ions, nutrients, and other solutes from their insect and vertebrate hosts by transmembrane uptake. For intracellular stages, these solutes must cross additional membranous barriers. At each step, ion channels and transporters mediate not only this uptake but also the removal of waste products. These transport proteins are best isolated and studied with patch-clamp, but these methods remain accessible to only a few parasitologists due to specialized instrumentation and the required training in both theory and practice. Here, we provide an overview of patch-clamp, describing the advantages and limitations of the technology and highlighting issues that may lead to incorrect conclusions. We aim to help non-experts understand and critically assess patch-clamp data in basic research studies.
Collapse
Affiliation(s)
- Jeanine Gezelle
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gagandeep Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
4
|
Borghi SM, Fattori V, Conchon-Costa I, Pinge-Filho P, Pavanelli WR, Verri WA. Leishmania infection: painful or painless? Parasitol Res 2016; 116:465-475. [PMID: 27933392 DOI: 10.1007/s00436-016-5340-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022]
Abstract
The complex life cycle and immunopathological features underpinning the interaction of Leishmania parasites and their mammalian hosts poses frequent poorly explored and inconclusively resolved questions. The altered nociceptive signals over the course of leishmaniasis remain an intriguing issue for nociceptive and parasitology researchers. Experimental investigations have utilized behavioral, morphological, and neuro-immune approaches in the study of experimental cutaneous leishmaniasis (CL). The data generated indicates new venues for the study of the pathological characteristics of nociceptive processing in this parasitic disease. Leishmania-induced pain may be easily observed in mice and rats. However, nociceptive data is more complex in human investigations, including the occurrence of painless lesions in mucocutaneous and cutaneous leishmaniasis. Data from recent decades indicate that humans can also be affected by pain-related symptoms, often distinct from the region of body infection. The molecular and cellular mechanisms underlying such variable nociceptive states in humans during the course of leishmaniasis are an active area of research. The present article reviews nociception in leishmaniasis, including in experimental models of CL and clinical reports.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
5
|
Asthana S, Gupta PK, Chaurasia M, Dube A, Chourasia MK. Polymeric colloidal particulate systems: intelligent tools for intracellular targeting of antileishmanial cargos. Expert Opin Drug Deliv 2013; 10:1633-51. [PMID: 24147603 DOI: 10.1517/17425247.2013.838216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Targeted cargo delivery systems can overcome drawbacks associated with antileishmanials delivery, by defeating challenges of physiological barriers. Various colloidal particulate systems have been developed in the past; few of them even achieved success in the market, but still are limited in some ways. AREAS COVERED This review is focused on the pathobiology of leishmaniasis, interactions of particulate systems with biological environment, targeting strategies along with current conventional and vaccine therapies with special emphasis on polymeric nanotechnology for effective antileishmanial cargo delivery. EXPERT OPINION The problems concerned with limited accessibility of chemotherapeutic cargos in conventional modes to Leishmania-harboring macrophages, their toxicity, and resistant parasitic strain development can be sorted out through target-specific delivery of cargos. Vaccination is another therapeutic approach employing antigen alone or adjuvant combinations delivered by means of a carrier, and can provide preventive measures against human leishmaniasis (HL). Therefore, there is an urgent need of designing site-specific antileishmanial cargo carriers for safe and effective management of HL. Among various colloidal carriers, polymeric particulate systems hold tremendous potential as an effective delivery tool by providing control over spatial and temporal distribution of cargos after systemic or localized administration along with enhancing their stability profile at a comparatively cost-effective price leading to improved chances of commercial applicability.
Collapse
Affiliation(s)
- Shalini Asthana
- CSIR-Central Drug Research Institute, CDRI communication No. 8523, Pharmaceutics Division , Lucknow-226031, UP , India +91 522 2612411 18 ; +91 522 2623405 ;
| | | | | | | | | |
Collapse
|
6
|
Delgado-Ramírez M, Pottosin II, Melnikov V, Dobrovinskaya OR. Infection by Trypanosoma cruzi enhances anion conductance in rat neonatal ventricular cardiomyocytes. J Membr Biol 2010; 238:51-61. [PMID: 21085939 DOI: 10.1007/s00232-010-9318-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
Recent studies on malaria-infected erythrocytes have shown increased anion channel activity in the host cell membrane, increasing the exchange of solutes between the cytoplasm and exterior. In the present work, we addressed the question of whether another intracellular protozoan parasite, Trypanosoma cruzi, alters membrane transport systems in the host cardiac cell. Neonatal rat cardiomyocytes were cultured and infected with T. cruzi in vitro. Ion currents were measured by patch-clamp technique in the whole-cell configuration. Two small-magnitude instantaneous anion currents, outward- and inward-rectifying, were recorded in all noninfected cardiomyocytes. In addition, ~10% of cardiomyocytes expressed a large anion-preferable, time-dependent current activated at positive membrane potentials. Hypotonic (230 mOsm) treatment resulted in the disappearance of the time-dependent current but provoked a dramatic increase of the instantaneous outward-rectifying one. Both instantaneous currents were suppressed by intracellular Mg(2+). T. cruzi infection did not provoke new anion currents in the host cells but caused an increase of the density of intrinsic swelling-activated outward current, up to twice in heavily infected cells. The occurrence of a time-dependent current dramatically increased in infected cells in the presence of Mg(2+) in the intracellular solution, from ~10 to ~80%, without a significant change of the current density. Our findings represent one further, besides the known Plasmodium falciparum, example of an intracellular parasite which upregulates the anionic currents expressed in the host cell.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045, Colima, México
| | | | | | | |
Collapse
|
7
|
Barratt JLN, Harkness J, Marriott D, Ellis JT, Stark D. Importance of nonenteric protozoan infections in immunocompromised people. Clin Microbiol Rev 2010; 23:795-836. [PMID: 20930074 PMCID: PMC2952979 DOI: 10.1128/cmr.00001-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
There are many neglected nonenteric protozoa able to cause serious morbidity and mortality in humans, particularly in the developing world. Diseases caused by certain protozoa are often more severe in the presence of HIV. While information regarding neglected tropical diseases caused by trypanosomatids and Plasmodium is abundant, these protozoa are often not a first consideration in Western countries where they are not endemic. As such, diagnostics may not be available in these regions. Due to global travel and immigration, this has become an increasing problem. Inversely, in certain parts of the world (particularly sub-Saharan Africa), the HIV problem is so severe that diseases like microsporidiosis and toxoplasmosis are common. In Western countries, due to the availability of highly active antiretroviral therapy (HAART), these diseases are infrequently encountered. While free-living amoebae are rarely encountered in a clinical setting, when infections do occur, they are often fatal. Rapid diagnosis and treatment are essential to the survival of patients infected with these organisms. This paper reviews information on the diagnosis and treatment of nonenteric protozoal diseases in immunocompromised people, with a focus on patients infected with HIV. The nonenteric microsporidia, some trypanosomatids, Toxoplasma spp., Neospora spp., some free-living amoebae, Plasmodium spp., and Babesia spp. are discussed.
Collapse
Affiliation(s)
- J L N Barratt
- Department of Microbiology, St. Vincent's Hospital, Darlinghurst 2010, NSW, Australia.
| | | | | | | | | |
Collapse
|