1
|
Lalrinkima H, Jacob SS, Raina OK, Chandra D, Lalawmpuii K, Lalchhandama C, Behera P, Tolenkhomba TC. Superoxide dismutase inhibits cytotoxic killing of Fasciola gigantica newly excysted juveniles expressed by sheep invitro. Exp Parasitol 2022; 242:108369. [PMID: 36058254 DOI: 10.1016/j.exppara.2022.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/04/2022]
Abstract
Fasciola gigantica faces a series of threats from various free radicals produced by the host immune system during its invasion through the abdominal cavity and establishment in the bile duct of ruminants, limiting the fluke viability. The role of the superoxide radical produced by Muzaffarnagari sheep immune effector cells against F. gigantica newly excysted juveniles (NEJs) is highlighted in this study, as is the critical role of superoxide dismutase enzyme (SOD) in dismutation of superoxide radicals derived from host immune effector cells in vitro. Three concentrations of the ovine immune effector cells viz. 2.5, 5, and 10 × 106 cells were tested for their ability to induced cytotoxic killing of the parasite. All the three cell concentrations caused significant (p < 0.01) cytotoxic killing of NEJs in comparison to the control groups. Also, reduction of the immune effector cell concentration directly correlates with the NEJs killing. Attachment of immune effector cells to the parasite tegument in the presence of anti-F. gigantica antibodies was found to be critical in inducing NEJs killing via antibody-dependent cell-mediated cytotoxicity (ADCC). However, the addition of SOD greatly inhibits cytotoxic killing of NEJs, demonstrating the importance of SOD enzyme in fluke survival and parasite evasion of the host immunity. Thus, F. gigantica SOD warrants a promising candidate for immunoprophylactic studies in ruminants against the tropical liver fluke.
Collapse
Affiliation(s)
- H Lalrinkima
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India; ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - S S Jacob
- ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India; ICAR-NIVEDI, Bengaluru, Karnataka, India
| | - O K Raina
- ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India
| | - D Chandra
- ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India
| | - K Lalawmpuii
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - C Lalchhandama
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - P Behera
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - T C Tolenkhomba
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| |
Collapse
|
2
|
Molecular cloning and functional characterization of a thioredoxin peroxidase gene in Echinococcus multilocularis. Mol Biochem Parasitol 2021; 245:111408. [PMID: 34343548 DOI: 10.1016/j.molbiopara.2021.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022]
Abstract
Thioredoxin peroxidase (TPx) plays an important role in protecting parasites against oxidative damage. However, studies on the role of TPxs in Echinococcus multilocularis are limited. In this study, one tpx gene of E. multilocularis, named as emtpx-1, was identified. EmTPx-1 shares two positionally conserved cysteine residues (Cys48 and Cys169) with orthologs from other platyhelminths. EmTPx-1 is highly expressed in the germinal layer and present in exosome-like vesicles secreted by E. multilocularis metacestodes. EmTPx-1 displays peroxidase activity, which removes hydrogen peroxide in the presence of dithiothreitol. Furthermore, EmTPx-1 could protect DNA from oxidative damages, and EmTPx-1-expressing E. coli cells had an enhanced resistance to oxidative stress. In addition, EmTPx-1 enhanced the expression of arg1, ym1, and il-10, but suppressed inos, tnf-α, and il-1β expression in LPS-stimulated macrophages. Our data suggest a critical role for EmTPx-1 in oxidative stresses and M2 macrophage polarization.
Collapse
|
3
|
Kueakhai P, Chaithirayanon K, Chaiwichien A, Samrit T, Osotprasit S, Suksomboon P, Jaikua W, Sobhon P, Changklungmoa N. Monoclonal antibody against Fasciola gigantica glutathione peroxidase and their immunodiagnosis potential for fasciolosis. Vet Parasitol 2019; 276:108979. [PMID: 31778940 DOI: 10.1016/j.vetpar.2019.108979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022]
Abstract
Glutathione peroxidases (GPx), major antioxidant enzymes, secreted by Fasciola spp., are important for the parasite evasion and protection against the host's immune responses. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica glutathione peroxidase (rFgGPx) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with rFgGPx. This MoAb (named 7B8) is IgG1 with κ light chains, and it reacted specifically with rFgGPx at a molecular weight 19 kDa as shown by immunoblotting, and reacted with the native FgGPx in the extracts of whole body (WB), metacercariae, newly excysted juveniles (NEJs), 4 week-old juveniles and adult F. gigantica as shown by indirect ELISA. It did not cross react with antigens in WB fractions from other adult trematodes, including Fischoederius cobboldi, Paramphistomum cervi, Setaria labiato-papillosa, Eurytrema pancreaticum, Gastrothylax crumenifer and Gigantocotyle explanatum. By immunolocalization, MoAb against rFgGPx reacted with the native protein in the tegument, vitelline cells, and eggs of adult F. gigantica. In addition, the sera from mice experimentally infected with F. gigantica were tested positive by this indirect sandwich ELISA. This result indicated that FgGPx is an abundantly expressed parasite protein that is secreted into the tegumental antigens (TA), therefore, FgGPx and its MoAb may be used for immunodiagnosis of both early and late fasciolosis gigantica in animals and humans.
Collapse
Affiliation(s)
- Pornanan Kueakhai
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Kulathida Chaithirayanon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Athit Chaiwichien
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Tepparit Samrit
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Supawadee Osotprasit
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Phawiya Suksomboon
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Wipaphorn Jaikua
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Narin Changklungmoa
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand.
| |
Collapse
|
4
|
Sangpairoj K, Apisawetakan S, Changklungmoa N, Kueakhai P, Chaichanasak P, Sobhon P, Chaithirayanon K. Potential of recombinant 2-Cys peroxiredoxin protein as a vaccine for Fasciola gigantica infection. Exp Parasitol 2018; 194:16-23. [DOI: 10.1016/j.exppara.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/20/2018] [Accepted: 09/16/2018] [Indexed: 12/30/2022]
|
5
|
Expression and characterization of glutathione peroxidase of the liver fluke, Fasciola gigantica. Parasitol Res 2018; 117:3487-3495. [DOI: 10.1007/s00436-018-6046-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022]
|
6
|
Cytosolic superoxide dismutase can provide protection against Fasciola gigantica. Acta Trop 2016; 162:75-82. [PMID: 27338185 DOI: 10.1016/j.actatropica.2016.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/19/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022]
Abstract
Superoxide dismutases (SOD), antioxidant metallo-enzymes, are a part of the first line of defense in the trematode parasites which act as the chief scavengers for reactive oxygen species (ROS). A recombinant Fasciola gigantica cytosolic SOD (FgSOD) was expressed in Escherichia coli BL21 (DE3) and used for immunizing rabbits to obtain polyclonal antibodies (anti-rFgSOD). This rabbit anti-rFgSOD reacted with the native FgSOD at a molecular weight of 17.5kDa. The FgSOD protein was expressed at high level in parenchyma, caecal epithelium and egg of the parasite. The rFgSOD reacted with antisera from rabbits infected with F. gigantica metacercariae collected at 2, 5, and 7 weeks after infection, and reacted with sera of infected mice. Anti-rFgSOD exhibited cross reactivity with the other parasites' antigens, including Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gastrothylax crumenifer, Paramphistomum cervi, and Setaria labiato papillosa. A vaccination was performed in imprinting control region (ICR) mice by subcutaneous injection with 50μg of rFgSOD combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 15 metacercariae by oral route. IgG1 and IgG2a in the immune sera were determined to indicate Th2 and Th1 immune responses. It was found that the parasite burden was reduced by 45%, and both IgG1 and IgG2a levels showed correlation with the numbers of worm recoveries.
Collapse
|
7
|
Molecular cloning and characterization of Fasciola gigantica thioredoxin-glutathione reductase. Parasitol Res 2015; 114:2119-27. [DOI: 10.1007/s00436-015-4400-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022]
|
8
|
Analysis of the expression and antioxidant activity of 2-Cys peroxiredoxin protein in Fasciola gigantica. Exp Parasitol 2014; 140:24-32. [DOI: 10.1016/j.exppara.2014.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 01/03/2014] [Accepted: 02/09/2014] [Indexed: 11/20/2022]
|
9
|
Changklungmoa N, Kueakhai P, Apisawetakan S, Riengrojpitak S, Sobhon P, Chaithirayanon K. Identification and expression of Fasciola gigantica thioredoxin. Parasitol Res 2014; 113:2335-43. [PMID: 24718754 DOI: 10.1007/s00436-014-3888-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/26/2014] [Indexed: 11/26/2022]
Abstract
In the present study, a cDNA encoding Trx from F. gigantica (FgTrx) was cloned by polymerase chain reaction (PCR). The sequence of FgTrx, analyzed by BLAST, SignalP, and ClustralW programs, showed 315 bp of an open reading frame (ORF), 12 bp 5'UTR, 78 bp 3'UTR, and the putative FgTrx peptide comprising of 104 amino acids, with a molecular weight of 11.68 kDa, with the active site containing five amino acids (tryptophan, cysteine, glycine, proline, cysteine) with a conserved dithiol motif from the two cysteines, and pI 5.86. The peptide had no signal sequence; hence, it was not a secreted protein. The recombinant FgTrx was expressed in Escherichia coli BL21 (DE3) and used for production for a polyclonal antibody in rabbits (anti-rFgTrx). The FgTrx protein expression, estimated by indirect ELISA using the rabbit anti-rFgTrx as probe, showed high levels in eggs, 2- and 4-week-old juveniles, and adult parasite. In a functional test, the rFgTrx exhibited specific activity that could be suppressed by an inhibitor (PX12). When tested by immunoblotting and immunohistochemistry, rabbit anti-rFgTrx reacted with natural FgTrx at a molecular weight of 11.68 kDa from eggs, metacercariae, NEJ, 2- and 4-week-old juveniles, and adult F. gigantica. The FgTrx protein was distributed at high levels in the tegument of 2- and 4-week-old juveniles, and the tegument, parenchyma, eggs, and reproductive organs of adult parasites. FgTrx may be one of the major factors acting against oxidative stresses that can damage the parasite; hence, it could be considered as a novel vaccine or drug target.
Collapse
Affiliation(s)
- Narin Changklungmoa
- Department of Pathobiology, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand,
| | | | | | | | | | | |
Collapse
|
10
|
Gretes MC, Poole LB, Karplus PA. Peroxiredoxins in parasites. Antioxid Redox Signal 2012; 17:608-33. [PMID: 22098136 PMCID: PMC3373223 DOI: 10.1089/ars.2011.4404] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Parasite survival and virulence relies on effective defenses against reactive oxygen and nitrogen species produced by the host immune system. Peroxiredoxins (Prxs) are ubiquitous enzymes now thought to be central to such defenses and, as such, have potential value as drug targets and vaccine antigens. RECENT ADVANCES Plasmodial and kinetoplastid Prx systems are the most extensively studied, yet remain inadequately understood. For many other parasites our knowledge is even less well developed. Through parasite genome sequencing efforts, however, the key players are being discovered and characterized. Here we describe what is known about the biochemistry, regulation, and cell biology of Prxs in parasitic protozoa, helminths, and fungi. At least one Prx is found in each parasite with a sequenced genome, and a notable theme is the common patterns of expression, localization, and functionality among sequence-similar Prxs in related species. CRITICAL ISSUES The nomenclature of Prxs from parasites is in a state of disarray, causing confusion and making comparative inferences difficult. Here we introduce a systematic Prx naming convention that is consistent between organisms and informative about structural and evolutionary relationships. FUTURE DIRECTIONS The new nomenclature should stimulate the crossfertilization of ideas among parasitologists and with the broader redox research community. The diverse parasite developmental stages and host environments present complex systems in which to explore the variety of roles played by Prxs, with a view toward parlaying what is learned into novel therapies and vaccines that are urgently needed.
Collapse
Affiliation(s)
- Michael C. Gretes
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - P. Andrew Karplus
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| |
Collapse
|
11
|
Identification and biochemical characterization of two novel peroxiredoxins in a liver fluke,Clonorchis sinensis. Parasitology 2011; 138:1143-53. [DOI: 10.1017/s0031182011000813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYWe identified 2 novel genes encoding different 2-Cys peroxiredoxins (PRxs), designated CsPRx2 and CsPRx3, inClonorchis sinensis, which invades the human hepatobiliary tracts. TheCsPRx2gene expression was temporally increased along with the parasite's development and its protein product was detected in almost all parts of adult worms including subtegument, as well as excretory-secretory products. Conversely,CsPRx3expression was temporally maintained at a basal level and largely restricted within interior parts of various tissues/organs. The recombinant forms of CsPRx proteins exhibited reducing activity against various hydroperoxides in the presence of either thioredoxin or glutathione (GSH) as a reducing equivalent, although they preferred H2O2and GSH as a catalytic substrate and electron donor, respectively. A steady-state kinetic study demonstrated that the CsPRx proteins followed a saturable, Michaelis-Menten-type equation with the catalytic efficiencies (kcat/Km) ranging from 103to 104M−1s−1, somewhat lower than those for other PRxs studied (104–105M−1s−1). The expression patterns and histological distributions specific to CsPRx2 and CsPRx3 might suggest different physiological functions of the antioxidant enzymes in protecting the worms against oxidative damage.
Collapse
|
12
|
Lack of protective efficacy in buffaloes vaccinated with Fasciola gigantica leucine aminopeptidase and peroxiredoxin recombinant proteins. Acta Trop 2011; 118:217-22. [PMID: 21376699 DOI: 10.1016/j.actatropica.2011.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 11/21/2022]
Abstract
Gene coding for leucine aminopeptidase (LAP), a metalloprotease, was identified in the tropical liver fluke, Fasciola gigantica; that on sequence analysis showed a close homology (98.6%) with leucine aminopeptidase of the temperate liver fluke, Fasciola hepatica. The recombinant leucine aminopeptidase protein was expressed in Escherichia coli. F. gigantica peroxiredoxin, a hydrogen peroxide scavenger and an immunomodulating protein, was also cloned and expressed in E. coli. A vaccination trial in buffaloes was conducted with these two recombinant proteins, with 150 and 300 μg of leucine aminopeptidase and a cocktail of 150 μg each of recombinant leucine aminopeptidase and peroxiredoxin in three groups, respectively. Both Th1- and Th2-associated humoral immune responses were elicited to immunization with these antigens. A challenge study with 400 metacercariae did not show a significant protection in terms of reduction in the worm burden (8.4%) or anti-fecundity/embryonation effect in the immunized groups, as to the non-immunized control animals. Our observations in this buffalo vaccination trial are contrary to the earlier promise shown by leucine aminopeptidase of F. hepatica as a leading candidate vaccine molecule. Identification of leucine aminopeptidase gene and evaluation of the protein for its protective efficacy in buffaloes is the first scientific report on this protein in F. gigantica.
Collapse
|
13
|
Hudson AL, Sotirchos IM, Davey MW. The activity and hydrogen peroxide sensitivity of the peroxiredoxins from the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol 2011; 176:17-24. [DOI: 10.1016/j.molbiopara.2010.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 01/17/2023]
|
14
|
Analysis of thioredoxin peroxidase as a promising antigen for diagnosis of Fasciola gigantica infection: a preliminary study. Parasitol Int 2010; 60:206-8. [PMID: 21185945 DOI: 10.1016/j.parint.2010.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 11/20/2022]
Abstract
Buffalo fasciolosis induced by Fasciola gigantica causes important economic losses in tropical areas of Asia. Detection of prepatent infection is essential to control this disease. Classical tools such as coprology, necroscopy or ELISA based on crude extracts from F. gigantica are poorly sensitive or specific. Purified antigens could be used to increase these parameters. Western blot analysis and mass spectrometry of a fraction of F. gigantica excretory-secretory products obtained by gel filtration showed that thioredoxin peroxidase could be a potential antigen for serodiagnosis: it was recognized from the 2nd week after infection, by all buffalo experimentally or naturally infected with F. gigantica but not by healthy animals.
Collapse
|