1
|
Lalhmangaihzuala S, Vanlaldinpuia K, Khiangte V, Laldinpuii Z, Liana T, Lalhriatpuia C, Pachuau Z. Therapeutic applications of carbohydrate-based compounds: a sweet solution for medical advancement. Mol Divers 2024; 28:4553-4579. [PMID: 38554170 DOI: 10.1007/s11030-024-10810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 04/01/2024]
Abstract
Carbohydrates, one of the most abundant biomolecules found in nature, have been seen traditionally as a dietary component of foods. Recent findings, however, have unveiled their medicinal potential in the form of carbohydrates-derived drugs. Their remarkable structural diversity, high optical purity, bioavailability, low toxicity and the presence of multiple functional groups have positioned them as a valuable scaffold and an exciting frontier in contemporary therapeutics. At present, more than 170 carbohydrates-based therapeutics have been granted approval by varying regulatory agencies such as United States Food and Drug Administration (FDA), Japan Pharmaceuticals and Medical Devices Agency (PMDA), Chinese National Medical Products Administration (NMPA), and the European Medicines Agency (EMA). This article explores an overview of the fascinating potential and impact of carbohydrate-derived compounds as pharmacological agents and drug delivery vehicles.
Collapse
Affiliation(s)
- Samson Lalhmangaihzuala
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Khiangte Vanlaldinpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India.
| | - Vanlalngaihawma Khiangte
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Zathang Laldinpuii
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Thanhming Liana
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Chhakchhuak Lalhriatpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Zodinpuia Pachuau
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| |
Collapse
|
2
|
Keshav P, Goyal DK, Kaur S. In vitro and in vivo therapeutic antileishmanial potential of ellagic acid against Leishmania donovani in murine model. Med Microbiol Immunol 2023; 212:35-51. [PMID: 36399160 DOI: 10.1007/s00430-022-00754-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
Parasite of genus Leishmania viz. L. donovani and L. infantum cause visceral leishmaniasis (VL) or Kala-azar, systemic disease with significant enlargement of the liver and spleen, weight loss, anemia, fever and immunosuppression. The silent expansion of vectors, reservoir hosts and resistant strains is also of great concern in VL control. Considering all these issues, the present study focused on in vitro and in vivo antileishmanial screening of ellagic acid (EA) against L. donovani. The in vitro study was performed against the protozoan parasite L. donovani and a 50% inhibitory concentration was calculated. The DNA arrest in the sub-G0/G1 phase of the cell cycle was studied. In vivo studies included the assessment of parasite burden and immunomodulation in response to treatment of ellagic acid in BALB/c mice. The levels of Th1 and Th2 cytokines and isotype antibodies were assessed in different groups of mice. EA showed in vitro parasiticidal activity with IC50 18.55 µg/mL and thwarted cell-cycle progression at the sub-G0/G1 phase. Administration of ellagic acid to the BALB/c mice reported diminution of splenic and hepatic parasite burden coupled with an expansion of CD4+ and CD8+ T lymphocytes. EA further potentiated a protective immune response with augmentation of Th1 type immune response evidenced by elevation of serum IgG2a levels and DTH response. EA was reported to be safe and non-toxic to the THP-1 cell line as well as to the liver and kidneys of mice. These findings endorse the therapeutic potential of EA with significant immunomodulation and can serve as a promising agent against this debilitating parasitic disease.
Collapse
Affiliation(s)
- Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Seth A, Ghoshal A, Dewaker V, Rani A, Singh SP, Dutta M, Katiyar S, Singh SK, Rashid M, Wahajuddin M, Kar S, Srivastava AK. Discovery of 2,3-dihydro-1 H-pyrrolo[3,4- b]quinolin-1-one derivatives as possible antileishmanial agents. RSC Med Chem 2022; 13:746-760. [PMID: 35814931 PMCID: PMC9215122 DOI: 10.1039/d2md00078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
A series of uniquely functionalized 2,3,-dihydro-1H-pyyrolo[3,4-b]quinolin-1-one derivatives were synthesized in one to two steps by utilizing a post-Ugi modification strategy and were evaluated for antileishmanial efficacy against visceral leishmaniasis (VL). Among the library compounds, compound 5m exhibited potential in vitro antileishmanial activity (CC50 = 65.11 μM, SI = 7.79, anti-amastigote IC50 = 8.36 μM). In vivo antileishmanial evaluation of 5m demonstrated 56.2% inhibition in liver and 61.1% inhibition in spleen parasite burden in infected Balb/c mice (12.5 mg kg-1, i.p.). In vitro pharmacokinetic study ascertained the stability of 5m in both simulated gastric fluid and simulated intestinal fluid. All the active compounds passed the PAINS filter and showed no toxicity in in silico predictions.
Collapse
Affiliation(s)
- Anuradha Seth
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Anirban Ghoshal
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
| | - Varun Dewaker
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
| | - Ankita Rani
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Sangh Priya Singh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
| | - Mukul Dutta
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Shivani Katiyar
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
| | - Sandeep Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
| | - Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
| | - Susanta Kar
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Ajay Kumar Srivastava
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Lucknow-226031 Uttar Pradesh India
| |
Collapse
|
4
|
Singh N, Sundar S. Integrating genomics and proteomics permits identification of immunodominant antigens associated with drug resistance in human visceral leishmaniasis in India. Exp Parasitol 2017; 176:30-45. [PMID: 28263760 DOI: 10.1016/j.exppara.2017.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/04/2017] [Accepted: 02/25/2017] [Indexed: 12/24/2022]
Abstract
Resistance of human pathogens like Leishmania to drugs is a growing concern where the multidrug-resistant phenotype renders chemotherapy ineffective. The acquired resistance of Leishmania to antimony has promoted intense research on the mechanisms involved but the question has not been resolved yet. In this study we have explored host-pathogen- drug interactions leading to identification of pharmacological determinants of host macrophages that resist the sodium antimony gluconate (SAG) mediated intracellular parasite killing. mRNA profiling of mammalian host stage amastigotes of sodium antimony gluconate (SAG) 'sensitive' and 'resistant' parasite lines was carried out using Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array. Patient sera was used to identify immunogenic proteins by two-dimensional gel analysis (2DE) and mass spectrometric analysis (LC-MS/MS). Immunofluorescence microscopy confirmed the identities on 'sensitive' and 'resistant' parasite lines. A total of nine immunogenic proteins whose intensities changed significantly and consistently in multiple experiments were detected, suggesting that a cohort of proteins are altered in expression levels in the 'resistant' parasites. Global expression profiling using microarrays revealed this regulation was not reflected by changes in the levels of the cognate mRNAs. Following identification of proteins by mass spectrometry, one such regulated protein, enolase, was chosen for more detailed analysis. Immunofluorescence microscopy employing antisera against this enzyme confirmed that its level was differentially regulated in the 'resistant' isolate. We show that high serum level of immunoreactive protein is associated with 'resistant' phenotype. Differentially expressed proteins with immunomodulatory activities were found to be associated with the 'resistant phenotype'.
Collapse
Affiliation(s)
- Neeloo Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
5
|
Mishra S, Upadhaya K, Mishra KB, Shukla AK, Tripathi RP, Tiwari VK. Carbohydrate-Based Therapeutics. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2016. [DOI: 10.1016/b978-0-444-63601-0.00010-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
dos Santos AO, Britta EA, Bianco EM, Ueda-Nakamura T, Filho BPD, Pereira RC, Nakamura CV. 4-Acetoxydolastane diterpene from the Brazilian brown alga Canistrocarpus cervicornis as antileishmanial agent. Mar Drugs 2011; 9:2369-2383. [PMID: 22163190 PMCID: PMC3229239 DOI: 10.3390/md9112369] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/01/2011] [Accepted: 10/18/2011] [Indexed: 11/18/2022] Open
Abstract
Natural marine products have shown an interesting array of diverse and novel chemical structures with potent biological activities. Our study reports the antiproliferative assays of crude extracts, fraction and pure compound (4R,9S,14S)-4α-acetoxy-9β,14α-dihydroxydolast-1(15),7-diene (1) obtained from brown alga Canistrocarpus cervicornis showing the antileishmanial activity. We showed that 1 had a dose-dependent activity during 72 h of treatment, exhibiting IC(50) of 2.0 μg/mL, 12.0 μg/mL, and 4.0 μg/mL for promastigote, axenic amastigote and intracellular amastigote forms of Leishmania amazonensis, respectively. A cytotoxicity assay showed that the action of the isolated compound 1 was 93.0 times less toxic to the macrophage than to the protozoan. Additionally, compound 1 induced ultrastructural changes, including extensive mitochondrial damage; decrease in Rh123 fluorescence, suggesting interference with the mitochondrial membrane potential; and lipid peroxidation in parasite cells. The use of 1 from C. cervicornis against L. amazonensis parasites might be of great interest as a future alternative to the development of new antileishmanial drugs.
Collapse
Affiliation(s)
- Adriana Oliveira dos Santos
- Postgraduate Program in Microbiology, State University of Londrina, Highway Celso Garcia Cid, PR 445, Km 380, CEP 86051-990, Londrina, Parana, Brazil; E-Mails: (A.O.d.S.); (B.P.D.F.)
| | - Elizandra Aparecida Britta
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringa, Colombo Avenue 5790, CEP 87020-900, Maringa, Parana, Brazil; E-Mails: (E.A.B); (T.U.-N.)
| | - Everson Miguel Bianco
- Postgraduate Program in Chemistry, Department of Fundamental Chemistry, Federal University of Pernambuco, CEP 50670-901, Recife, Pernambuco, Brazil; E-Mail:
| | - Tania Ueda-Nakamura
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringa, Colombo Avenue 5790, CEP 87020-900, Maringa, Parana, Brazil; E-Mails: (E.A.B); (T.U.-N.)
| | - Benedito Prado Dias Filho
- Postgraduate Program in Microbiology, State University of Londrina, Highway Celso Garcia Cid, PR 445, Km 380, CEP 86051-990, Londrina, Parana, Brazil; E-Mails: (A.O.d.S.); (B.P.D.F.)
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringa, Colombo Avenue 5790, CEP 87020-900, Maringa, Parana, Brazil; E-Mails: (E.A.B); (T.U.-N.)
| | - Renato Crespo Pereira
- Department of Marine Biology, Federal Fluminense University, PO Box 100644, CEP 24001-970, Niteroi, Rio de Janeiro, Brazil; E-Mail:
| | - Celso Vataru Nakamura
- Postgraduate Program in Microbiology, State University of Londrina, Highway Celso Garcia Cid, PR 445, Km 380, CEP 86051-990, Londrina, Parana, Brazil; E-Mails: (A.O.d.S.); (B.P.D.F.)
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringa, Colombo Avenue 5790, CEP 87020-900, Maringa, Parana, Brazil; E-Mails: (E.A.B); (T.U.-N.)
| |
Collapse
|
7
|
Miltefosine induces metacaspase and PARP genes expression in Leishmania infantum. Braz J Infect Dis 2011; 15:442-8. [DOI: 10.1016/s1413-8670(11)70225-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/11/2011] [Indexed: 12/24/2022] Open
|
8
|
Leishmania amazonensis: effects of oral treatment with copaiba oil in mice. Exp Parasitol 2011; 129:145-51. [PMID: 21771592 DOI: 10.1016/j.exppara.2011.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/20/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022]
Abstract
Leishmaniasis is a severe public-health problem, with high rates of morbidity and mortality. Efforts to find new, effective and safe oral agents for the treatment of leishmaniasis have been ongoing for several decades, in order to avoid the problems with the currently used antimonials. In the present study, we found that a copaiba oil oral treatment (Group IV) caused a significant reduction in the average lesion size (1.1±0.4mm) against Leishmania amazonensis lesions compared with untreated mice (Group I) (4.4±1.3mm). To prove the safety of the oil, the toxicity and genotoxicity were also determined. Histopathological evaluation did not reveal changes in the copaiba oil-treated animals compared to the control animals. In the mutagenicity evaluation, (micronucleus test) the dose tested (2000mg/kg) showed no genotoxic effects. Morphological and ultrastructural analyses demonstrated notable changes in parasite cells treated with this oleoresin. The main ultrastructural effect was mitochondrial swelling. We also demonstrated that in vitro copaiba oil treatment of L. amazonensis led to an increase in plasma membrane permeability, and depolarization in the mitochondrial membrane potential in parasite cells. Although the mechanism of action of the oleoresin is still unclear, these findings indicate that copaiba oil is a possible new drug, which would provide a safer, shorter, less-expensive, and more easily administered treatment for leishmaniasis.
Collapse
|
9
|
In vitro and experimental therapeutic studies of the calcium channel blocker bepridil: Detection of viable Leishmania (L.) chagasi by real-time PCR. Exp Parasitol 2011; 128:111-5. [DOI: 10.1016/j.exppara.2011.02.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/13/2010] [Accepted: 02/21/2011] [Indexed: 11/22/2022]
|
10
|
Smirlis D, Duszenko M, Ruiz AJ, Scoulica E, Bastien P, Fasel N, Soteriadou K. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors 2010; 3:107. [PMID: 21083891 PMCID: PMC3136144 DOI: 10.1186/1756-3305-3-107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/17/2010] [Indexed: 11/25/2022] Open
Abstract
Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.
Collapse
Affiliation(s)
- Despina Smirlis
- Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 127 Bas, Sofias Ave,, 11521 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kaur J, Sundar S, Singh N. Molecular docking, structure-activity relationship and biological evaluation of the anticancer drug monastrol as a pteridine reductase inhibitor in a clinical isolate of Leishmania donovani. J Antimicrob Chemother 2010; 65:1742-8. [PMID: 20519355 DOI: 10.1093/jac/dkq189] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Using the pteridine reductase (PTR1) enzyme of Leishmania as the target, the objective of our study was to find a drug candidate that can enter the clinical development process after being evaluated for safety and efficacy in animals. METHODS Monastrol (R) and (S) enantiomers were docked using the QUANTUM program into the active site of a Leishmania donovani PTR1 (LdPTR1) homology model. A structure-activity relationship based on a homology model of a recombinant enzyme was substantiated by a recombinant enzyme inhibition assay. We adapted an L. donovani (transfected with green fluorescent protein) intramacrophage amastigote screening assay as a cellular model for leishmaniasis. Furthermore, since the clinicopathological features and immunopathological mechanisms of visceral leishmaniasis (VL) in a hamster model are remarkably similar to those of human disease, systemic infection of hamsters with L. donovani was utilized to collect in vivo data for monastrol. RESULTS Both monastrol (R) and (S) enantiomers fit well in the ligand-binding pocket of LdPTR1. Monastrol exhibits a K(i) value of 0.428 microM in the recombinant enzyme inhibition assay. We confirm monastrol as a potent inhibitor of PTR1 in Leishmania; it inhibits proliferation of amastigotes with an IC(50) (50% inhibitory concentration) of 10 microM in macrophage cultures infected with an L. donovani clinical isolate, with no host cytotoxicity. We also show that in experimental animals, oral administration of a 5 mg/kg dose of monastrol on two alternate days inhibits 50% of parasite growth, giving therapeutic backing to the use of monastrol as a potent antileishmanial in human VL cases. CONCLUSIONS To our knowledge, this is the first report presenting monastrol as a potent oral antileishmanial.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Drug Target Discovery & Development Division, Central Drug Research Institute, Chattar Manzil Palace, PO Box No. 173, Lucknow-226001, CSIR, India
| | | | | |
Collapse
|