1
|
Yue T, Wang J, Liu F, Gong P, Li J, Zhang X, Zhang N. The effects of anti-lung cancer in nude mice by a fully human single-chain antibody against associated antigen Ts7TMR between A549 cells and Trichinella spiralis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:300-308. [PMID: 38753524 DOI: 10.1080/21691401.2024.2347377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Lung cancer is a dangerous disease that is lacking in an ideal therapy. Here, we evaluated the anti-lung cancer effect in nude mice of a fully human single-chain antibody (scFv) against the associated antigen 7 transmembrane receptor (Ts7TMR), which is also called G protein-coupled receptor, between A549 cells and Trichinella spiralis (T. spiralis). Our data showed that anti-Ts7TMR scFv could inhibit lung cancer growth in a dose-dependent manner, with a tumour inhibition rate of 59.1%. HE staining did not reveal any obvious tissue damage. Mechanistically, immunohistochemical staining revealed that the scFv down-regulated the expression of PCNA and VEGF in tumour tissues. Overall, this study found that anti-Ts7TMR scFv could inhibit A549 lung cancer growth by suppressing cell proliferation and angiogenesis, which may provide a new strategy for treating lung cancer.
Collapse
Affiliation(s)
- Taotao Yue
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jinpeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fang Liu
- First Hospital, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Eissa MM, Salem AE, El Skhawy N. Parasites revive hope for cancer therapy. Eur J Med Res 2024; 29:489. [PMID: 39367471 PMCID: PMC11453045 DOI: 10.1186/s40001-024-02057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Parasites have attained a life-long stigma of being detrimental organisms with deleterious outcomes. Yet, recently, a creditable twist was verified that can dramatically change our perception of those parasites from being a source of misery to millions of people to a useful anti-cancerous tool. Various parasites have shown promise to combat cancer in different experimental models, including colorectal, lung, and breast cancers, among others. Helminths and protozoan parasites, as well as their derivatives such as Echinococcus granulosus protein KI-1, Toxoplasma gondii GRA15II, and Trypanosoma cruzi calreticulin, have demonstrated the ability to inhibit tumor growth, angiogenesis, and metastasis. This article provides an overview of the literature on various cancer types that have shown promising responses to parasite therapy in both in vitro and in vivo animal studies. Parasites have shown anti-neoplastic activity through a variety of mechanisms that collectively contribute to their anti-cancer properties. These include immunomodulation, inhibition of angiogenesis, and molecular mimicry with cancer cells. This review article sheds light on this intriguing emerging field and emphasizes the value of collaborative multidisciplinary research projects with funding agencies and pharmaceutical companies. Thus, these strategies would secure continuous exploration of this new avenue and accelerate the advancement of cancer therapy research. Although experimental studies are heavily conducted by leaps and bounds, further steps are definitely lagging. Upgrading research from the experimental level to the clinical trial would be a wise progression toward efficient exploitation of the anti-neoplastic capabilities of parasites, ultimately saving countless lives.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Ahmed Ebada Salem
- Department of Radiology and Nuclear Medicine, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 48123, USA
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Walter NS, Bhattacharyya S. Mining parasites for their potential as novel therapeutic agents against cancer. Med Oncol 2024; 41:211. [PMID: 39073638 DOI: 10.1007/s12032-024-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Despite recent advances in the management and therapeutic of cancer, the treatment of the disease is limited by its high cost and severe side effects. In this scenario, there is an unmet need to identify novel treatment alternatives for this dreaded disease. Recently there is growing evidence that parasites may cause anticancer effects because of a negative correlation between parasitic infections and tumour growth despite some parasites that are known to exhibit pro-carcinogenic effects. It has been observed that parasites exert an anticancer effect either by activating the host's immune response or by secreting certain molecules that exhibit anticancer potential. The activation of the immune response by these parasitic organisms results in the inhibition of some of the hallmarks of cancer such as tumour proliferation, angiogenesis, and metastasis. This review summarizes the current advances as well as the mechanisms underlying the possible implications of this diverse group of organisms as anticancer agents.
Collapse
Affiliation(s)
- Neha Sylvia Walter
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
4
|
Yousefi M, Akbari M, Hadipour M, Dehkordi AB, Farahbakhsh Z, Darani HY. Parasites as potential targets for cancer immunotherapy. J Cancer Res Clin Oncol 2023; 149:8027-8038. [PMID: 36949175 DOI: 10.1007/s00432-023-04694-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Parasites and cancers have some common antigens. Much scientific evidence in the human population, animal models, and in vitro experiments exhibit that parasites have significant anti-cancer effects. The larval stage of the tapeworm Echinococcus granulosus, Toxoplasma gondii, Trypanosoma cruzy, Plasmodium's, and Trichinella spiralis are among the parasites that have been subjects of anti-cancer research in the last decades. Anti-tumor effects of parasites may be due to the direct impact of the parasites per se or indirectly due to the immune response raised against common antigens between malignant cells and parasites. This manuscript reviews the anti-cancer effects of parasites and possible mechanisms of these effects. Options for using parasites or their antigens for cancer treatment in the future have been discussed.
Collapse
Affiliation(s)
- Morteza Yousefi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadesmail Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahboubeh Hadipour
- Department of Parasitology and Mycology, Faculty of Medicine, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azar Balouti Dehkordi
- Department of Parasitology and Mycology, Faculty of Medicine, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Farahbakhsh
- Department of Parasitology and Mycology, Faculty of Medicine, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Yousofi Darani
- Department of Parasitology and Mycology, Faculty of Medicine, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Yue T, Zhang X, Gong P, Li J, Wang X, Li X, Ma Y, Chen X, Zhang X, Cheng S, Zhang H, Zhang N. Antitumor effect of invasive Lactobacillus plantarum delivering associated antigen gene sHSP between Trichinella spiralis and Lewis lung cancer cells. Int Immunopharmacol 2023; 115:109708. [PMID: 36638662 DOI: 10.1016/j.intimp.2023.109708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Cancer is a frequent disease that seriously harms human health, but there are no ideal therapies for it. Currently, some food-grade microorganisms such as Lactobacillus plantarum have shown better anti-tumor effects. Here, recombinant Lactobacillus plantarum lives vector vaccine NC8-sHSP was generated by using the invasive Lactobacillus plantarum NC8 expressing FnBPA to deliver the associated antigen gene sHSP between trichinella spiralis and Lewis lung cancer cells (LLC) to host cells. NC8-sHSP colonized the mouse intestine to deliver plasmids to intestinal epithelial cells and controlled the growth of LLC by inducing humoral, cellular, and mucosal immunity. The tumor inhibition rates were 62.36% and 68.37% in the prophylactic assay and 40.76% and 44.22% in the treatment assay, respectively. Recombination of Lactobacillus plantarum did not cause significant damage. In conclusion, the recombinant invasive Lactobacillus plantarum constructed in this study has better anti-Lewis lung cancer effects in mice, which will provide new ideas for the application of food-grade microorganisms in anti-tumor and the development of oral tumor vaccines.
Collapse
Affiliation(s)
- Taotao Yue
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yeting Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuejiao Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuqin Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongbo Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Bruschi F, Ashour D, Othman A. Trichinella-induced immunomodulation: Another tale of helminth success. Food Waterborne Parasitol 2022; 27:e00164. [PMID: 35615625 PMCID: PMC9125654 DOI: 10.1016/j.fawpar.2022.e00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
Trichinella spiralis is a unique parasite in that both the adults and larvae survive in two different intracellular niches in the same host. The immune response, albeit intense, is highly modulated to ensure the survival of both the host and the parasite. It is skewed to T helper 2 and regulatory arms. Diverse cells from both the innate and adaptive compartments of immunity, including dendritic cells, T regulatory cells, and alternatively activated macrophages are thought to mediate such immunomodulation. The parasite has also an outstanding ability to evade the immune system by several elaborate processes. The molecules derived from the parasites including Trichinella, particularly the components of the excretory-secretory products, are being continually identified and explored for the potential of ameliorating the immunopathology in animal models of diverse inflammatory and autoimmune human diseases. Herein we discuss the various aspects of Trichinella-induced immunomodulation with a special reference to the practical implications of the immune system manipulation in alleviating or possibly curing human diseases.
Collapse
Key Words
- AAM, alternatively activated macrophage
- AW, adult worm
- Allergy
- Autoimmune diseases
- Breg, regulatory B cell
- CAM, classically activated macrophage
- Cancer
- ES L1, ES product of T. spiralis muscle larva
- ES, excretory–secretory
- IFN- γ, interferon-γ
- IIL, intestinal infective larva
- IL, interleukin
- Immune evasion
- Immunomodulation
- ML, muscle larva
- NBL, newborn larva
- NOS, nitric oxide synthase
- TGF-β, transforming growth factor-β
- TLR, toll-like receptor
- TNF- α, tumor necrosis factor-α
- Th, T helper
- Tol-DC, tolerogenic dendritic cell
- Treg, regulatory T cell
- Trichinella
- Trichinella-derived molecules
- Ts-AES, ES from adult T. spiralis
Collapse
Affiliation(s)
- F. Bruschi
- School of Medicine, Department of Translational Research, N.T.M.S., Università di Pisa, Pisa, Italy
| | - D.S. Ashour
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A.A. Othman
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Ruenchit P, Reamtong O, Khowawisetsut L, Adisakwattana P, Chulanetra M, Kulkeaw K, Chaicumpa W. Peptide of Trichinella spiralis Infective Larval Extract That Harnesses Growth of Human Hepatoma Cells. Front Cell Infect Microbiol 2022; 12:882608. [PMID: 35558100 PMCID: PMC9086976 DOI: 10.3389/fcimb.2022.882608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Trichinella spiralis, a tissue-dwelling helminth, causes human trichinellosis through ingestion of undercooked meat containing the parasite’s infective larvae. However, benefits from T. spiralis infection have been documented: reduction of allergic diseases, inhibition of collagen-induced arthritis, delay of type 1 diabetes progression, and suppression of cancer cell proliferation. Since conventional cancer treatments have limited and unreliable efficacies with adverse side effects, novel adjunctive therapeutic agents and strategies are needed to enhance the overall treatment outcomes. This study aimed to validate the antitumor activity of T. spiralis infective larval extract (LE) and extricate the parasite-derived antitumor peptide. Extracts of T. spiralis infective larvae harvested from striated muscles of infected mice were prepared and tested for antitumor activity against three types of carcinoma cells: hepatocellular carcinoma HepG2, ovarian cancer SK-OV-3, and lung adenocarcinoma A549. The results showed that LE exerted the greatest antitumor effect on HepG2 cells. Proteomic analysis of the LE revealed 270 proteins. They were classified as cellular components, proteins involved in metabolic processes, and proteins with diverse biological functions. STRING analysis showed that most LE proteins were interconnected and played pivotal roles in various metabolic processes. In silico analysis of anticancer peptides identified three candidates. Antitumor peptide 2 matched the hypothetical protein T01_4238 of T. spiralis and showed a dose-dependent anti-HepG2 effect, not by causing apoptosis or necrosis but by inducing ROS accumulation, leading to inhibition of cell proliferation. The data indicate the potential application of LE-derived antitumor peptide as a complementary agent for human hepatoma treatment.
Collapse
Affiliation(s)
- Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Wanpen Chaicumpa,
| |
Collapse
|
8
|
Excretory-secretory product of Trichinella spiralis inhibits tumor cell growth by regulating the immune response and inducing apoptosis. Acta Trop 2022; 225:106172. [PMID: 34627760 DOI: 10.1016/j.actatropica.2021.106172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
The excretory-secretory product (ESP) of Trichinella spiralis (T. spiralis) has been reported to inhibit the growth of various tumor cells, but the mechanism is not yet clear. To explore the effect and mechanism of ESP on liver cancer cells, tumor models were established with H22 cells and then infected with T. spiralis. The results showed that the growth of tumors in mice infected with T. spiralis was significantly inhibited. ESP from adult worms or muscle larvae were then incubated with H22 cells in vitro, and it was found that the ESP could inhibit cell proliferation and promote apoptosis. Subsequently, apoptosis-related proteins in stimulated H22 cells were evaluated, and ESP was found to induce cell apoptosis through the mitochondrial pathway. Additionally, Th-related cytokines were investigated in vivo, and the results showed that the levels of Th1 cytokines were significantly increased in the early stage of T. spiralis infection, while Th2 cytokines increased later than Th1 cytokines, implying that Th1 cytokines with antitumor effects may play a role in inhibiting tumor growth at early stage. In short, ESP can directly induce tumor cell apoptosis and indirectly inhibit tumor cell growth through the host immune system, which may be the antitumor mechanism of T. spiralis infection.
Collapse
|
9
|
Yue TT, Zhang N, Li JH, Lu XY, Wang XC, Li X, Zhang HB, Cheng SQ, Wang BB, Gong PT, Zhang XC. Anti-osteosarcoma effect of antiserum against cross antigen TPD52 between osteosarcoma and Trichinella spiralis. Parasit Vectors 2021; 14:498. [PMID: 34565443 PMCID: PMC8474799 DOI: 10.1186/s13071-021-05008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichinella spiralis (T. spiralis) is a parasite occurring worldwide that has been proven to have antitumour ability. However, studies on the antitumour effects of cross antigens between the tumour and T. spiralis or antibodies against cross antigens between tumours and T. spiralis are rare. METHODS To study the role of cross antigens between osteosarcoma and T. spiralis, we first screened the cDNA expression library of T. spiralis muscle larvae to obtain the cross antigen gene tumour protein D52 (TPD52), and prepared fusion protein TPD52 and its antiserum. The anti-osteosarcoma effect of the anti-TPD52 antiserum was studied using cell proliferation and cytotoxicity assays as well as in vivo animal models; preliminary data on the mechanism were obtained using western blot and immunohistochemistry analyses. RESULTS Our results indicated that TPD52 was mainly localized in the cytoplasm of MG-63 cells. Anti-TPD52 antiserum inhibited the proliferation of MG-63 cells and the growth of osteosarcoma in a dose-dependent manner. The tumour inhibition rate in the 100 μg treatment group was 61.95%. Enzyme-linked immunosorbent assay showed that injection of anti-TPD52 antiserum increased the serum levels of IFN-γ, TNF-α, and IL-12 in nude mice. Haematoxylin and eosin staining showed that anti-TPD52 antiserum did not cause significant pathological damage. Apoptosis of osteosarcoma cells was induced by anti-TPD52 antiserum in vivo and in vitro. CONCLUSIONS Anti-TPD52 antiserum exerts an anti-osteosarcoma effect by inducing apoptosis without causing histopathological damage.
Collapse
Affiliation(s)
- Tao-Tao Yue
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jian-Hua Li
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiang-Yun Lu
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiao-Cen Wang
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hong-Bo Zhang
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shu-Qin Cheng
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Bo-Bo Wang
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Peng-Tao Gong
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xi-Chen Zhang
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Elhasawy FA, Ashour DS, ElSaka AM, Ismail HI. The Apoptotic Effect of Trichinella spiralis Infection Against Experimentally Induced Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2021; 22:935-946. [PMID: 33773560 PMCID: PMC8286675 DOI: 10.31557/apjcp.2021.22.3.935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/25/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common type of cancer. Prognosis of HCC remains unsatisfactory. Therefore, developing new therapeutic modalities is still mandatory. Tumor biotherapy is a novel concept developed as a therapeutic strategy for cancer treatment. There is a similarity between the regulatory mechanism of Trichinella spiralis nurse cell formation and tumor cell apoptosis signal regulation. OBJECTIVES Induction of apoptosis by T. spiralis can represent a new strategy for tumor treatment. METHODS Experimental animals were divided in four groups; negative control (GI), T. spiralis infected (GII), induced HCC (GIII) and HCC then infected with T. spiralis (GIV). The apoptotic effect of T. spiralis infection was assessed by histopathological and immunohistochemical staining of B-cell lymphoma 2 (Bcl-2). RESULTS We found higher survival rate of rats and decreased weight of their livers with no nodules in HCC- T. spiralis group as compared to HCC group. Improvement of the dysplastic changes and increased apoptotic bodies which was confirmed by decreased expression of Bcl-2 reported in HCC- T. spiralis group. CONCLUSION Trichinella-induced apoptosis can be a contributing mechanism of the anti-tumor effect of T. spiralis infection. Our results showed a certain level of decreased progression of the tumor in HCC-T. spiralis group as indicated by increased rate of apoptosis and subsequently had a positive impact on the survival of rats. .
Collapse
Affiliation(s)
- Fawzya A Elhasawy
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Egypt.
| | - Dalia S Ashour
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Egypt.
| | - Ayman M ElSaka
- Department of Pathology, Faculty of Medicine, Tanta University, Egypt.
| | - Howaida I Ismail
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Egypt.
| |
Collapse
|
11
|
Wu Z, Nagano I, Khueangchiangkhwang S, Maekawa Y. Proteomics of Trichinella. TRICHINELLA AND TRICHINELLOSIS 2021:103-183. [DOI: 10.1016/b978-0-12-821209-7.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Liao C, Cheng X, Liu M, Wang X, Boireau P. Trichinella spiralis and Tumors: Cause, Coincidence or Treatment? Anticancer Agents Med Chem 2019; 18:1091-1099. [PMID: 29173187 PMCID: PMC6340159 DOI: 10.2174/1871520617666171121115847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
Abstract
Background: Conventional therapeutic strategies for tumors have had limited success, and innovative and more effective approaches to treatment are urgently required. The ancient idea that various biological, bacterial, yeast, viral, and para-sitic agents can be used as cancer therapeutics has gradually attracted considerable interest. Certain parasites have been widely discussed in association with human and animal tumors. The purpose of this review was to examine previous literatures which investigates the relations between Trichinella spiralis (T. spiralis) and tumors. Methods: Using PubMed, articles published before 2018 in the whole world have been searched and comprehensively re-viewed. Results: Many researches have provided proofs that T. spiralis possesses antitumor activities. The antitumor effect of T. spi-ralis was first described in the 1970s. However, its research has been inconsistent, and little progress has been made in this field. Therefore, the mechanisms underlying these inhibitory effects are still unclear, and convincing evidence of the links be-tween T. spiralis and the prevention or treatment of tumors from clinical trials is absent. Meanwhile, some other researches al-so suggested that T. spiralis may cause or contribute to coinfection with a tumors. Conclusion: The review has highlighted the scientific literature focussing on evidence for T. spiralis to act as a pro- or anti-tumorigenic agent is summarized and discussed, in hope of contributing to a better understanding of the relations between T. spiralis and tumors
Collapse
Affiliation(s)
- Chengshui Liao
- The Key Lab of Animal Disease and Public Health/ College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xiangchao Cheng
- The Key Lab of Animal Disease and Public Health/ College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuelin Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Pascal Boireau
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China.,ANSES, Laboratory for Animal Health, Maisons-Alfort, France
| |
Collapse
|
13
|
Ramos-Martínez E, Rojas-Serrano J, García-Hernández O, García-Vázquez FJ, Andrade WA, Avila G, Salinas-Pasquier L, López-Vancell MR. The immune response to Hymenolepis nana in mice decreases tumorigenesis induced by 7,12 dimethylbenz-anthracene. Cytokine 2019; 123:154743. [PMID: 31255915 DOI: 10.1016/j.cyto.2019.154743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cancer is a high-impact disease throughout the world. A negative correlation has been established between the development of cancer and the Th2 immune response. Infection by helminth parasites is characterized by the induction of a strong and long-lasting Th2 response. The aim of this work was to evaluate the effect of the immune response induced by the infection with the helminth Hymenolepis nana, on the tumorigenesis induced by dimethylbenz-anthracene (DMBA) in mice. METHODOLOGY Four different groups of 14 female BALB/c mice were formed; Group A, dimethyl sulfoxide (DMSO) (vehicle) was administered cutaneously, Group B infected with H. nana, group C, cutaneously DMBA and finally Group D infected with H. nana and cutaneous DMBA. The tumor load was determined in those animals that developed cancerous lesions. In all groups were determined: serum concentration of IgE, IFNγ, IL-10, IL-5 and malondialdehyde (MDA). The inflammatory infiltrate was analyzed from skin samples and the expression of the main eosinophilic protein and myeloperoxidase was determined. RESULTS The group previously infected with H. nana had a reduced amount of tumors with smaller size, in comparison to the group that received only DMBA; this reduction was associated with lower levels of IFNγ and IL-10, while levels of IgE, IL-5 and MDA were higher. Further, the number of eosinophils and neutrophils was statistically higher in the animals that were previously infected with the helminth and developed less tumors. CONCLUSION The immune response induced by H. nana infection is associated with the reduction of tumors probably due to the activity of eosinophils and neutrophils.
Collapse
Affiliation(s)
- E Ramos-Martínez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - J Rojas-Serrano
- Servicio Clínico de enfermedades del Intersticio del Pulmón y Reumatología Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de México, Mexico
| | - O García-Hernández
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - F J García-Vázquez
- Instituto Nacional de Pediatría, Laboratorio de Inmunogenética Molecular, Departamento de Análisis Clínicos y Estudios Especiales, México, DF, Mexico
| | - W A Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - G Avila
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, Mexico
| | - L Salinas-Pasquier
- Servicio de Anatomía Patológica, Unidad de Citopatología. Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - M R López-Vancell
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
14
|
Secretory Products of Trichinella spiralis Muscle Larvae and Immunomodulation: Implication for Autoimmune Diseases, Allergies, and Malignancies. J Immunol Res 2015; 2015:523875. [PMID: 26114122 PMCID: PMC4465845 DOI: 10.1155/2015/523875] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Trichinella spiralis has the unique ability to make itself "at home" by creating and hiding in a new type of cell in the host body that is the nurse cell. From this immunologically privileged place, the parasite orchestrates a long-lasting molecular cross talk with the host through muscle larvae excretory-secretory products (ES L1). Those products can successfully modulate parasite-specific immune responses as well as responses to unrelated antigens (either self or nonself in origin), providing an anti-inflammatory milieu and maintaining homeostasis. It is clear, based on the findings from animal model studies, that T. spiralis and its products induce an immunomodulatory network (which encompasses Th2- and Treg-type responses) that may allow the host to deal with various hyperimmune-associated disorders as well as tumor growth, although the latter still remains unclear. This review focuses on studies of the molecules released by T. spiralis, their interaction with pattern recognition receptors on antigen presenting cells, and subsequently provoked responses. This paper also addresses the immunomodulatory properties of ES L1 molecules and how the induced immunomodulation influences the course of different experimental inflammatory and malignant diseases.
Collapse
|
15
|
Necrosis and apoptosis in Trichinella spiralis-mediated tumour reduction. Cent Eur J Immunol 2015; 40:42-53. [PMID: 26155183 PMCID: PMC4472539 DOI: 10.5114/ceji.2015.50832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/25/2015] [Indexed: 12/18/2022] Open
Abstract
It is known that infection with different pathogens, including helminths, can alter the progression of malignant or other diseases. We studied the effect of chronic Trichinella spiralis infection or muscle larvae excretory-secretory (ES L1) antigens on the malignant tumour growth in the mouse melanoma model system in vivo and in vitro. Our results confirmed that chronic infection with T. spiralis possesses the capacity to slow down the progression of tumour growth, resulting in an impressive reduction in tumour size. We found that the phenomenon could, at least partially, be related to a lower level of tumour necrosis compared to necrosis present in control animals with progressive malignancy course. An increased apoptotic potential among the low percentage of cells within the total tumour cell number in vivo was also observed. ES L1 antigen, as a parasitic product that is released during the chronic phase of infection, reduced the survival and slightly, but significantly increased the apoptosis level of melanoma cells in vitro. Our results imply that powerful Trichinella anti-malignance capacity does not rely only on necrosis and apoptosis but other mechanisms through which infection or parasite products manipulate the tumor establishment and expansion should be considered.
Collapse
|
16
|
Radovic I, Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Sofronic-Milosavljevic L. Trichinella spiralis shares epitopes with human autoantigens. Mem Inst Oswaldo Cruz 2013; 107:503-9. [PMID: 22666861 DOI: 10.1590/s0074-02762012000400010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/16/2012] [Indexed: 12/20/2022] Open
Abstract
Like other helminths, Trichinella spiralis has evolved strategies to allow it to survive in the host organism, including the expression of epitopes similar to those present in either expressed or hidden host antigens. To identify T. spiralis-derived antigens that are evolutionarily conserved in the parasite and its host and that could be responsible for its evasion of the host immune response, we examined the reactivity of six different types of autoantibodies to T. spiralis larvae from muscle. T. spiralis antigens that share epitopes with human autoantigens were identified by assessing the cross-reactivity of autoantibody-containing serum samples with T. spiralis antigens in the absence of specific anti-parasite antibodies. Of the 55 autoantibody-containing human serum samples that we analysed by immunohistological screening, 24 (43.6%) recognised T. spiralis muscle larvae structures such as the subcuticular region, the genital primordium or the midgut. Using Western blots, we demonstrated that the same sera reacted with 24 protein components of T. spiralis muscle larvae excretory-secretory L1 antigens. We found that the human autoantibodies predominantly bound antigens belonging to the TSL1 group; more specifically, the autoantibody-containing sera reacted most frequently with the 53-kDa component. Thus, this protein is a good candidate for further studies of the mechanisms of T. spiralis-mediated immunomodulation.
Collapse
Affiliation(s)
- Ivana Radovic
- Reference Laboratory for Trichinellosis, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
17
|
Identification of a novel gene product expressed by Trichinella spiralis that binds antiserum to Sp2/0 myeloma cells. Vet Parasitol 2013; 194:183-5. [PMID: 23465747 DOI: 10.1016/j.vetpar.2013.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To obtain novel antigen genes for use as an anti-tumor vaccine, a Trichinella spiralis cDNA expression library was constructed from muscle larvae RNA and screened with sera from Balb/C mice injected with Sp2/0 myeloma cells. One positive clone was obtained after three rounds of immunoscreening of the cDNA expression library and was subsequently excised in vivo using the ExAssist helper phage with SOLR strain. A full-length gene was amplified using 5'-RACE technology and analyzed by BLAST, Protein Analysis System of ELM, and DNAStar Software. The sequencing results showed that the fragment was 569 bp in length and contained an open reading frame. It was predicted that the full-length gene encoded 136 amino acids. This gene, TS2, contained four putative N-Arg dibasic convertase (nardilysine) cleavage sites, one peptide C-terminal amidation site, and one glycosaminoglycan attachment site. Six antibody epitopes were predicted by bioinformatic analysis.
Collapse
|