1
|
Teixeira SC, Rosini AM, de Souza G, Fajardo Martínez AF, Silva RJ, Ambrósio SR, Sola Veneziani RC, Bastos JK, Gomes Martins CH, Barbosa BF, Vieira Ferro EA. Polyalthic acid and oleoresin from Copaifera trapezifolia Hayne reduce Toxoplasma gondii growth in human villous explants, even triggering an anti-inflammatory profile. Exp Parasitol 2023; 250:108534. [PMID: 37100271 DOI: 10.1016/j.exppara.2023.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Due to the lack of efficient antiparasitic therapy and vaccines, as well as emerging resistance strains, congenital toxoplasmosis is still a public health issue worldwide. The present study aimed to assess the effects of an oleoresin obtained from the species Copaifera trapezifolia Hayne (CTO), and an isolated molecule found in the CTO, ent-polyalthic acid (ent-15,16-epoxy-8(17),13(16),14-labdatrien-19-oic acid) (named as PA), against T. gondii infection. We used human villous explants as an experimental model of human maternal-fetal interface. Uninfected and infected villous explants were exposed to the treatments; the parasite intracellular proliferation and the cytokine levels were measured. Also, T. gondii tachyzoites were pre-treated and the parasite proliferation was determined. Our findings showed that CTO and PA reduced efficiently the parasite growth with an irreversible action, but without causing toxicity to the villi. Also, treatments reduced the levels of IL-6, IL-8, MIF and TNF by villi, what configures a valuable treatment option for the maintenance of a pregnancy in an infectious context. In addition to a possible direct effect on parasites, our data suggest an alternative mechanism by which CTO and PA alter the villous explants environment and then impair parasite growth, since the pre-treatment of villi resulted in lower parasitic infection. Here, we highlighted PA as an interesting tool for the design of new anti-T. gondii compounds.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Sergio Ricardo Ambrósio
- Nucleus of Research in Technological and Exact Sciences, University of Franca, Franca, SP, Brazil.
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Henrique Gomes Martins
- Department of Microbiology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
2
|
Cardinelli CC, Silva JEAE, Ribeiro R, Veiga-Junior VF, dos Santos EP, de Freitas ZMF. Toxicological Effects of Copaiba Oil ( Copaifera spp.) and Its Active Components. PLANTS (BASEL, SWITZERLAND) 2023; 12:1054. [PMID: 36903915 PMCID: PMC10005474 DOI: 10.3390/plants12051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Vegetable oils are among the most important traditional resources of Amazonia. Oleoresins are a type of oil that have interesting characteristics and highly bioactive properties with pharmacological potential. Oleoresins produced in the trunks of Copaifera (Fabaceae) spp. trees, known as copaiba oils, are made up of terpenes from the sesquiterpene (volatile) and diterpene (resinous) classes, but in amounts that vary between species and depending on several factors, such as soil type. Despite being used for medicinal purposes, via topical and oral application, the toxic effects of copaiba oils and their constituents are little known. The current paper reviews the toxicological studies, both in vitro and in vivo, described in the literature for copaiba oils, as well as the cytotoxic characteristics (against microorganisms and tumor cells) in in silico, in vitro and in vivo models for the sesquiterpenes and diterpenes that make up these oils.
Collapse
Affiliation(s)
- Camila Castanho Cardinelli
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Josiane Elizabeth Almeida e Silva
- Department of Chemical Engineering, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
- Department of Biological Sciences, Institute of Biological Sciences, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Rayssa Ribeiro
- Department of Chemical Engineering, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
| | - Valdir F. Veiga-Junior
- Department of Chemical Engineering, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
| | - Elisabete Pereira dos Santos
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Zaida Maria Faria de Freitas
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
3
|
Martínez AFF, Teixeira SC, de Souza G, Rosini AM, Júnior JPDL, Melo GN, Blandón KOE, Gomes AO, Ambrósio SR, Veneziani RCS, Bastos JK, Martins CHG, Ferro EAV, Barbosa BF. Leaf hydroalcoholic extract and oleoresin from Copaifera multijuga control Toxoplasma gondii infection in human trophoblast cells and placental explants from third-trimester pregnancy. Front Cell Infect Microbiol 2023; 13:1113896. [PMID: 36860986 PMCID: PMC9970041 DOI: 10.3389/fcimb.2023.1113896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
The conventional treatment of congenital toxoplasmosis is mainly based on the combination of sulfadiazine and pyrimethamine. However, therapy with these drugs is associated with severe side effects and resistance, requiring the study of new therapeutic strategies. There are currently many studies with natural products, including Copaifera oleoresin, showing actions against some pathogens, as Trypanosoma cruzi and Leishmania. In the present study, we investigated the effects of the leaf hydroalcoholic extract and oleoresin from Copaifera multijuga against Toxoplasma gondii in human villous (BeWo) and extravillous (HTR8/SVneo) trophoblast cells, as well as in human villous explants from third-trimester pregnancy. For this purpose, both cells and villous explants were infected or not with T. gondii, treated with hydroalcoholic extract or oleoresin from C. multijuga and analyzed for toxicity, parasite proliferation, cytokine and ROS production. In parallel, both cells were infected by tachyzoites pretreated with hydroalcoholic extract or oleoresin, and adhesion, invasion and replication of the parasite were observed. Our results showed that the extract and oleoresin did not trigger toxicity in small concentrations and were able to reduce the T. gondii intracellular proliferation in cells previously infected. Also, the hydroalcoholic extract and oleoresin demonstrated an irreversible antiparasitic action in BeWo and HTR8/SVneo cells. Next, adhesion, invasion and replication of T. gondii were dampened when BeWo or HTR8/SVneo cells were infected with pretreated tachyzoites. Finally, infected and treated BeWo cells upregulated IL-6 and downmodulated IL-8, while HTR8/SVneo cells did not change significantly these cytokines when infected and treated. Finally, both the extract and oleoresin reduced the T. gondii proliferation in human explants, and no significant changes were observed in relation to cytokine production. Thus, compounds from C. multijuga presented different antiparasitic activities that were dependent on the experimental model, being the direct action on tachyzoites a common mechanism operating in both cells and villi. Considering all these parameters, the hydroalcoholic extract and oleoresin from C. multijuga can be a target for the establishment of new therapeutic strategy for congenital toxoplasmosis.
Collapse
Affiliation(s)
- Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Joed Pires de Lima Júnior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gabriel Nogueira Melo
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Kelvin Orlando Espinoza Blandón
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Angelica Oliveira Gomes
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Sergio Ricardo Ambrósio
- Nucleus of Research in Technological and Exact Sciences, University of Franca, Franca, Brazil
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
- *Correspondence: Bellisa Freitas Barbosa,
| |
Collapse
|
4
|
Design and Optimization of a Natural Medicine from Copaifera reticulata Ducke for Skin Wound Care. Polymers (Basel) 2022; 14:polym14214483. [DOI: 10.3390/polym14214483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
In this study, we developed a bioadhesive emulsion-filled gel containing a high amount of Copaifera reticulata Ducke oil-resin as a veterinary or human clinical proposal. The phytotherapeutic system had easy preparation, low cost, satisfactory healing ability, and fly repellency, making it a cost-effective clinical strategy for wound care and myiasis prevention. Mechanical, rheological, morphological, and physical stability assessments were performed. The results highlight the crosslinked nature of the gelling agent, with three-dimensional channel networks stabilizing the Copaifera reticulata Ducke oil-resin (CrD-Ore). The emulgel presented antimicrobial activity, satisfactory adhesion, hardness, cohesiveness, and viscosity profiles, ensuring the easy spreading of the formulation. Considering dermatological application, the oscillatory responses showed a viscoelastic performance that ensures emulgel retention at the action site, reducing the dosage frequencies. In Vivo evaluations were performed using a case report to treat ulcerative skin wounds aggravated by myiasis in calves and heifers, which demonstrated healing, anti-inflammatory, and repellent performance for the emulsion-filled gel. The emulgel preparation, which is low in cost, shows promise as a drug for wound therapy.
Collapse
|
5
|
da Silva Souza Campanholi K, Sonchini Gonçalves R, Bassi da Silva J, Said dos Santos R, Carla de Oliveira M, Barbosa de Souza Ferreira S, Vizioli de Castro-Hoshino L, Bento Balbinot R, Lazarin-Bidóia D, Luciano Baesso M, Luciano Bruschi M, Vataru Nakamura C, Caetano W. Thermal stimuli-responsive topical platform based on copaiba oil-resin: Design and performance upon ex-vivo human skin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Lazarin-Bidóia D, Garcia FP, Ueda-Nakamura T, Silva SDO, Nakamura CV. Natural compounds based chemotherapeutic against Chagas disease and leishmaniasis: mitochondrion as a strategic target. Mem Inst Oswaldo Cruz 2022; 117:e220396. [PMID: 35352776 PMCID: PMC8970591 DOI: 10.1590/0074-02760220396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
Over the past years, natural products have been explored in order to find biological active substances to treat various diseases. Regarding their potential action against parasites such as trypanosomatids, specially Trypanosoma cruzi and Leishmania spp., much advance has been achieved. Extracts and purified molecules of several species from genera Piper, Tanacetum, Porophyllum, and Copaifera have been widely investigated by our research group and exhibited interesting antitrypanosomal and antileishmanial activities. These natural compounds affected different structures in parasites, and we believe that the mitochondrion is a strategic target to induce parasite death. Considering that these trypanosomatids have a unique mitochondrion, this cellular target has been extensively studied aiming to find more selective drugs, since the current treatment of these neglected tropical diseases has some challenges such as high toxicity and prolonged treatment time. Here, we summarise some results obtained with natural products from our research group and we further highlighted some strategies that must be considered to finally develop an effective chemotherapeutic agent against these parasites.
Collapse
Affiliation(s)
- Danielle Lazarin-Bidóia
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Francielle Pelegrin Garcia
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Tânia Ueda-Nakamura
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Sueli de Oliveira Silva
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Celso Vataru Nakamura
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| |
Collapse
|
7
|
da Silva PR, do Carmo Alves de Lima M, Souza TP, Sandes JM, da Conceição Alves de Lima A, Neto PJR, Dos Santos FAB, Alves LC, da Silva RMF, de Moraes Rocha GJ, da Cruz Filho IJ. Lignin from Morinda citrifolia leaves: Physical and chemical characterization, in vitro evaluation of antioxidant, cytotoxic, antiparasitic and ultrastructural activities. Int J Biol Macromol 2021; 193:1799-1812. [PMID: 34774863 DOI: 10.1016/j.ijbiomac.2021.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
In this work, we investigated in vitro the antioxidant, cytotoxic and anti-leishmanial activities of a lignin extracted from the leaves of Morinda citrifolia. Initially, an analysis of the composition of the sheets was performed, then the lignin was obtained by alkaline delignification and characterized by different techniques: elemental analysis, FT-R, UV-vis, HSQC-NMR, thermal analysis, Py-GC/MS and by GPC. The results showed that the leaves had in their composition cellulose (31.29%), hemicellulose (25.01%), lignin (18.34%), extractives (14.39%) and ash (10.03%). The lignin extraction yield was 89.8%. The lignin obtained is of the GSH type with the following contents 79.39%, 13.58% and 7.03% respectively. Furthermore, it is low molecular weight and thermally stable. It had a phenolic content of 93.3 mg GAE/g and low antioxidant activity. In macrophage cytotoxicity assays, it presented a CC50 of 31.0 μg/mL, showing less toxicity than amphotericin B. In assays against the promastigote forms of Leishmania amazonensis, lignin presented an IC50 of 29.56 μg/mL, a less effective concentration than amphotericin B (IC50 = 0.14 μg/mL). However, it was able to promote inhibition of the parasites, a fact confirmed by structural changes. These findings reinforce that M. citrifolia lignin is a promising macromolecule for use as an antiparasitic and antioxidant agent.
Collapse
Affiliation(s)
- Paula Roberta da Silva
- Federal University of Pernambuco, Department of Antibiotics, Biosciences Center, 50.670-420 Recife, PE, Brazil
| | | | - Thammyris Pires Souza
- Federal University of Pernambuco, Department of Antibiotics, Biosciences Center, 50.670-420 Recife, PE, Brazil
| | - Jana Messias Sandes
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | | | - Pedro José Rolim Neto
- Federal University of Pernambuco, Department of Pharmacia, Health Sciences Center, 50.670-420 Recife, PE, Brazil
| | | | - Luiz Carlos Alves
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | | | - George Jackson de Moraes Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Polo II de Alta Tecnologia, Rua Giuseppe Máximo Scolfaro, 10.000, PO Box 6192, 13083-100 Campinas, SP, Brazil.
| | - Iranildo José da Cruz Filho
- Federal University of Pernambuco, Department of Antibiotics, Biosciences Center, 50.670-420 Recife, PE, Brazil
| |
Collapse
|
8
|
Silva MAC, dos Anjos Melo DF, de Oliveira SAM, Cruz ADC, da Conceição EC, de Paula JR, Lino Junior RDS, da Cunha LC. Acute and a 28-repeated dose toxicity study of commercial oleoresin from Copaifera sp. in rodents. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Passero LFD, Brunelli EDS, Sauini T, Amorim Pavani TF, Jesus JA, Rodrigues E. The Potential of Traditional Knowledge to Develop Effective Medicines for the Treatment of Leishmaniasis. Front Pharmacol 2021; 12:690432. [PMID: 34220515 PMCID: PMC8248671 DOI: 10.3389/fphar.2021.690432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that affects people living in tropical and subtropical areas of the world. There are few therapeutic options for treating this infectious disease, and available drugs induce severe side effects in patients. Different communities have limited access to hospital facilities, as well as classical treatment of leishmaniasis; therefore, they use local natural products as alternative medicines to treat this infectious disease. The present work performed a bibliographic survey worldwide to record plants used by traditional communities to treat leishmaniasis, as well as the uses and peculiarities associated with each plant, which can guide future studies regarding the characterization of new drugs to treat leishmaniasis. A bibliographic survey performed in the PubMed and Scopus databases retrieved 294 articles related to traditional knowledge, medicinal plants and leishmaniasis; however, only 20 were selected based on the traditional use of plants to treat leishmaniasis. Considering such studies, 378 quotes referring to 292 plants (216 species and 76 genera) that have been used to treat leishmaniasis were recorded, which could be grouped into 89 different families. A broad discussion has been presented regarding the most frequent families, including Fabaceae (27 quotes), Araceae (23), Solanaceae and Asteraceae (22 each). Among the available data in the 378 quotes, it was observed that the parts of the plants most frequently used in local medicine were leaves (42.3% of recipes), applied topically (74.6%) and fresh poultices (17.2%). The contribution of Latin America to studies enrolling ethnopharmacological indications to treat leishmaniasis was evident. Of the 292 plants registered, 79 were tested against Leishmania sp. Future studies on leishmanicidal activity could be guided by the 292 plants presented in this study, mainly the five species Carica papaya L. (Caricaceae), Cedrela odorata L. (Meliaceae), Copaifera paupera (Herzog) Dwyer (Fabaceae), Musa × paradisiaca L. (Musaceae), and Nicotiana tabacum L. (Solanaceae), since they are the most frequently cited in articles and by traditional communities.
Collapse
Affiliation(s)
- Luiz Felipe D Passero
- Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil.,Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), São Paulo, Brazil
| | - Erika Dos Santos Brunelli
- Center for Ethnobotanical and Ethnopharmacological Studies (CEE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Thamara Sauini
- Center for Ethnobotanical and Ethnopharmacological Studies (CEE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Thais Fernanda Amorim Pavani
- Chemical and Pharmaceutical Research Group (GPQFfesp), Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jéssica Adriana Jesus
- Laboratório de Patologia de Moléstias Infecciosas (LIM50), Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eliana Rodrigues
- Center for Ethnobotanical and Ethnopharmacological Studies (CEE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
10
|
Kawakami MYM, Zamora LO, Araújo RS, Fernandes CP, Ricotta TQN, de Oliveira LG, Queiroz-Junior CM, Fernandes AP, da Conceição EC, Ferreira LAM, Barros ALB, Aguiar MG, Oliveira AEMFM. Efficacy of nanoemulsion with Pterodon emarginatus Vogel oleoresin for topical treatment of cutaneous leishmaniasis. Biomed Pharmacother 2021; 134:111109. [PMID: 33341050 DOI: 10.1016/j.biopha.2020.111109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical skin disease caused by the protozoan genus Leishmania. The treatment is restricted to a handful number of drugs that exhibit toxic effects, limited efficacy, and drug resistance. Additionally, developing an effective topical treatment is still an enormous unmet medical challenge. Natural oils, e.g. the oleoresin from P. emarginatus fruits (SO), contain various bioactive molecules, especially terpenoid compounds such as diterpenes and sesquiterpenes. However, its use in topical formulations can be impaired due to the natural barrier of the skin for low water solubility compounds. Nanoemulsions (NE) are drug delivery systems able to increase penetration of lipophilic compounds throughout the skin, improving their topical effect. In this context, we propose the use of SO-containing NE (SO-NE) for CL treatment. The SO-NE was produced by a low energy method and presented suitable physicochemical characteristic: average diameter and polydispersity index lower than 180 nm and 0.2, respectively. Leishmania (Leishmania) amazonensis-infected BALB/c mice were given topical doses of SO or SO-NE. The topical use of a combination of SO-NE and intraperitoneal meglumine antimoniate reduced lesion size by 41 % and tissue regeneration was proven by histopathological analyses. In addition, a reduction in the parasitic load and decreased in the level of IFN-γ in the lesion may be associated, as well as a lower level of the cytokine IL-10 may be associated with a less intense inflammatory process. The present study suggests that SO-NE in combination meglumine antimoniate represents a promising alternative for the topical treatment of CL caused by L. (L.) amazonensis.
Collapse
Affiliation(s)
- Monique Y M Kawakami
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Lisset Ortiz Zamora
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Raquel S Araújo
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Caio P Fernandes
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Tiago Q N Ricotta
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro G de Oliveira
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edemilson C da Conceição
- Laboratory of Research, Development and Innovation of Bioproducts, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lucas A M Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André L B Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marta G Aguiar
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna E M F M Oliveira
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil.
| |
Collapse
|
11
|
Monzote L, Scherbakov AM, Scull R, Satyal P, Cos P, Shchekotikhin AE, Gille L, Setzer WN. Essential Oil from Melaleuca leucadendra: Antimicrobial, Antikinetoplastid, Antiproliferative and Cytotoxic Assessment. Molecules 2020; 25:E5514. [PMID: 33255562 PMCID: PMC7728144 DOI: 10.3390/molecules25235514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/19/2022] Open
Abstract
Essential oils (EOs) are known for their use in cosmetics, food industries, and traditional medicine. This study presents the chemical composition and therapeutic properties against kinetoplastid and eukaryotic cells of the EO from Melaleucaleucadendra (L.) L. (Myrtaceae). Forty-five compounds were identified in the oil by GC-MS, containing a major component the 1,8-cineole (61%). The EO inhibits the growth of Leishmania amazonensis and Trypanosoma brucei at IC50 values <10 μg/mL. However, 1,8 cineole was not the main compound responsible for the activity. Against malignant (22Rv1, MCF-7, EFO-21, including resistant sublines MCF-7/Rap and MCF-7/4OHTAMO) and non-malignant (MCF-10A, J774A.1 and peritoneal macrophage) cells, IC50 values from 55 to 98 μg/mL and from 94 to 144 μg/mL were obtained, respectively. However, no activity was observed on Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, Candida parapsilosis, Microsporum canis, or Trypanosoma cruzi. The EO was able to control the lesion size and parasite burden in the model of cutaneous leishmaniasis in BALB/c mice caused by L. amazonensis compared to untreated animals (p < 0.05) and similar with those treated with Glucantime® (p > 0.05). This work constitutes the first evidence of antiproliferative potentialities of EO from M. leucadendra growing in Cuba and could promote further preclinical investigations to confirm the medical value of this plant, in particular for leishmaniasis treatment.
Collapse
Affiliation(s)
- Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine “Pedro Kouri”, 10400 Havana, Cuba
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 24 Kashirskoye sh., Moscow 115522, Russia;
| | - Ramón Scull
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, La Coronela, La Lisa, 13600 Havana, Cuba;
| | - Prabodh Satyal
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium;
| | - Andrey E. Shchekotikhin
- Laboratory of Chemical Transformations of Antibiotics, Gause Institute of New Antibiotics, 11 B. Pirogovskaya St., Moscow 119021, Russia;
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria;
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
12
|
Copaifera spp. oleoresins impair Toxoplasma gondii infection in both human trophoblastic cells and human placental explants. Sci Rep 2020; 10:15158. [PMID: 32938966 PMCID: PMC7495442 DOI: 10.1038/s41598-020-72230-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
The combination of pyrimethamine and sulfadiazine is the standard care in cases of congenital toxoplasmosis. However, therapy with these drugs is associated with severe and sometimes life-threatening side effects. The investigation of phytotherapeutic alternatives to treat parasitic diseases without acute toxicity is essential for the advancement of current therapeutic practices. The present study investigates the antiparasitic effects of oleoresins from different species of Copaifera genus against T. gondii. Oleoresins from C. reticulata, C. duckei, C. paupera, and C. pubiflora were used to treat human trophoblastic cells (BeWo cells) and human villous explants infected with T. gondii. Our results demonstrated that oleoresins were able to reduce T. gondii intracellular proliferation, adhesion, and invasion. We observed an irreversible concentration-dependent antiparasitic action in infected BeWo cells, as well as parasite cell cycle arrest in the S/M phase. The oleoresins altered the host cell environment by modulation of ROS, IL-6, and MIF production in BeWo cells. Also, Copaifera oleoresins reduced parasite replication and TNF-α release in villous explants. Anti-T. gondii effects triggered by the oleoresins are associated with immunomodulation of the host cells, as well as, direct action on parasites.
Collapse
|
13
|
Abstract
AbstractThis systematic review investigated the evidence for the therapeutic potential of essential oils (EOs) against Leishmania amazonensis. We searched available scientific publications from 2005 to 2019 in the PubMed and Web of Science electronic databases, according to PRISMA statement. The search strategy utilized descriptors and free terms. The EOs effect of 35 species of plants identified in this systematic review study, 45.7% had half of the maximal inhibitory concentration (IC50) 10 < IC50 ⩽ 50 μg mL−1 and 14.3% had a 10 < IC50μg mL−1 for promastigote forms of L. amazonensis. EOs from Cymbopogon citratus species had the lowest IC50 (1.7 μg mL−1). Among the plant species analyzed for activity against intracellular amastigote forms of L. amazonensis, 39.4% had an IC50 10 < IC50 ⩽ 50 μg mL−1, and 33.3% had an IC50 10 < IC50μg mL−1. Aloysia gratissima EO showed the lowest IC50 (0.16 μg mL−1) for intracellular amastigotes. EOs of Chenopodium ambrosioides, Copaifera martii and Carapa guianensis, administered by the oral route, were effective in reducing parasitic load and lesion volume in L. amazonensis-infected BALB/c mice. EOs of Bixa orellana and C. ambrosioides were effective when administered intraperitoneally. Most of the studies analyzed in vitro and in vivo for the risk of bias showed moderate methodological quality. These results indicate a stimulus for the development of new phytotherapy drugs for leishmaniasis treatment.
Collapse
|
14
|
Antileishmanial Activity and Influence on Mitochondria of the Essential Oil from Tagetes lucida Cav. and Its Main Component. Sci Pharm 2020. [DOI: 10.3390/scipharm88030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Current antileishmanial drugs are toxic, expensive, and resistance to them has emerged. Several studies have focused on natural products as alternatives. In the present work, the chemical composition, in vitro antileishmanial activity, cytotoxicity effects, and the influence on mitochondrial function of the essential oil from Tagetes lucida Cav. was determined, as well its main compound estragole. Forty-nine compounds were detected in the oil by gas chromatography-mass spectrometry (GC-MS), of which estragole was the main constituent (97%). The oil showed inhibition of the promastigotes of L. tarentolae and L. amazonensis (IC50 = 61.4 and 118.8 µg/mL, respectively), decreased oxygen consumption of L. tarentolae, disrupted mitochondrial membrane potential in L. amazonensis, inhibitory activity on the intracellular amastigote of L. amazonensis (IC50 = 14.2 ± 1.6 µg/mL), and cytotoxicity values ranging from 80.8 to 156 µg/mL against murine macrophages and J774 cells. Estragole displayed higher activity on promastigotes (IC50 = 28.5 and 25.5 µg/mL, respectively), amastigotes (IC50 = 1.4 ± 0.1 µg/mL), and cytotoxicity values ranging from 20.6 to 14.5 µg/mL, respectively, while on mitochondria, it caused a decrease of the membrane potential but did not inhibit oxygen consumption. The potential antileishmanial activity of the essential oil from T. lucida and estragole makes these compounds favorable candidates for exploration in further studies.
Collapse
|
15
|
Rocha SMMD, Cardoso PCDS, Bahia MDO, Pessoa CDÓ, Soares PC, Rocha SMD, Burbano RMR, Rocha CAMD. Effect of the kaurenoic acid on genotoxicity and cell cycle progression in cervical cancer cells lines. Toxicol In Vitro 2019; 57:126-131. [DOI: 10.1016/j.tiv.2019.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
|
16
|
Antinociceptive activity of Copaifera officinalis Jacq. L oil and kaurenoic acid in mice. Inflammopharmacology 2019; 27:829-844. [DOI: 10.1007/s10787-019-00588-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
|
17
|
Active Essential Oils and Their Components in Use against Neglected Diseases and Arboviruses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6587150. [PMID: 30881596 PMCID: PMC6387720 DOI: 10.1155/2019/6587150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
The term neglected diseases refers to a group of infections caused by various classes of pathogens, including protozoa, viruses, bacteria, and helminths, most often affecting impoverished populations without adequate sanitation living in close contact with infectious vectors and domestic animals. The fact that these diseases were historically not considered priorities for pharmaceutical companies made the available treatments options obsolete, precarious, outdated, and in some cases nonexistent. The use of plants for medicinal, religious, and cosmetic purposes has a history dating back to the emergence of humanity. One of the principal fractions of chemical substances found in plants are essential oils (EOs). EOs consist of a mixture of volatile and hydrophobic secondary metabolites with marked odors, composed primarily of terpenes and phenylpropanoids. They have great commercial value and were widely used in traditional medicine, by phytotherapy practitioners, and in public health services for the treatment of several conditions, including neglected diseases. In addition to the recognized cytoprotective and antioxidative activities of many of these compounds, larvicidal, insecticidal, and antiparasitic activities have been associated with the induction of oxidative stress in parasites, increasing levels of nitric oxide in the infected host, reducing parasite resistance to reactive oxygen species, and increasing lipid peroxidation, ultimately leading to serious damage to cell membranes. The hydrophobicity of these compounds also allows them to cross the membranes of parasites as well as the blood-brain barrier, collaborating in combat at the second stage of several of these infections. Based on these considerations, the aim of this review was to present an update of the potential of EOs, their fractions, and their chemical constituents, against some neglected diseases, including American and African trypanosomiasis, leishmaniasis, and arboviruses, specially dengue.
Collapse
|
18
|
Investigation of Safety Profile of Four Copaifera Species and of Kaurenoic Acid by Salmonella/Microsome Test. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7631531. [PMID: 30733813 PMCID: PMC6348810 DOI: 10.1155/2019/7631531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/12/2018] [Accepted: 12/31/2018] [Indexed: 12/19/2022]
Abstract
Trees of the Copaifera genus are native to the tropical regions of Latin America and Western Africa. Copaifera sp is widely used as a popular medicine and it has various ethnopharmacological indications, including gonorrhea, bronchitis, asthma, skin ulcers, ulcers, sore throat, uterine infections, general inflammations, cancer, and leishmanioses. Kaurenoic acid is a naturally occurring diterpene found in Copaifera and has been used as an anti-inflammatory, treatment of ulcer, leishmaniasis, and cancer. Bearing in mind the fact that the Ames test is an excellent tool to assess the safety of extracts, oils, and phytochemicals isolated from medicinal plants, from it, we evaluate the mutagenic potential of four species, between oleoresins (C. oblongifolia; C. langsdorffii) and leaves extracts (C. lucens; C. multijuga), of the Copaifera genus and also of kaurenoic acid, which is one of its major compounds. The results showed that the Copaifera spp. and kaurenoic acid did not induce an increase in the number of revertant colonies, without mutagenic effect in experiments, in the all concentrations evaluated by Ames test. The results obtained in our study support the safe use of the Copaifera genus medicinal plants selected and of kaurenoic acid.
Collapse
|
19
|
Chitosan/Copaiba oleoresin films for would dressing application. Int J Pharm 2019; 555:146-152. [DOI: 10.1016/j.ijpharm.2018.11.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
|
20
|
Arruda C, Aldana Mejía JA, Ribeiro VP, Gambeta Borges CH, Martins CHG, Sola Veneziani RC, Ambrósio SR, Bastos JK. Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus-A review. Biomed Pharmacother 2018; 109:1-20. [PMID: 30396065 DOI: 10.1016/j.biopha.2018.10.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Copaifera is a genus of large trees found in Brazil, mainly in Amazon forest, but also in Atlantic forest and cerrado biomes. It has also been found in other countries in South America. In Africa, it is found mainly in Congo, Cameroon, Guinea and Angola. Its oleoresin has been used in folk medicine in the treatment of numerous healthy disorders, such as urinary, respiratory, skin and inflammatory diseases, for which there are several studies corroborating its ethnopharmacological uses. It is also extensively employed in the pharmaceutical and cosmetic industries in the development of ointments, pills, soaps, perfumes, among others. Copaifera oleoresin contains mainly diterpenes, such as: kaurenoic acid, kaurenol, copalic acid, agathic acid, hardwiickic acid, polyalthic acid, and sesquiterpenes, comprising β-caryophyllene, caryophyllene oxide, α-copaene, α-humulene, γ-muurolene and β-bisabolol, among other compounds. On the other hand, Copaifera leaves contain mainly phenolic compounds, such as flavonoids and methylated galloylquinic acid derivatives. Therefore, considering the economic importance of Copaifera oleoresin, its ethnopharmacological uses, the need to develop new pharmaceuticals for the treatment of many diseases, as well as the pharmacological potential of the compounds found in Copaifera spp., it was undertaken a review covering mostly the last two decades on the distribution, chemistry, pharmacology, quality control and safety of Copaifera species.
Collapse
Affiliation(s)
- Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Jennyfer Andrea Aldana Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | | | | | | | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
21
|
Lima MPD, Lopes EM, Gomes LDS, França ARDS, Acha BT, Carvalho ALM, Almeida FRDC. Technological development of microemulsions with perspectives for pain treatment: a patent review. Expert Opin Ther Pat 2018; 28:691-702. [PMID: 30175633 DOI: 10.1080/13543776.2018.1519025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Microemulsions are thermodynamically stable translucent systems widely used for systemic delivery of drugs. The present study is the first to analyze the biotechnological potential of microemulsion systems for therapeutic purposes, through transdermal route, for pain treatment. AREAS COVERED Patents were searched in the World Intellectual Property Organization (WIPO), European Patent Office (Espacenet), United States Patent and Trademark Office (USPTO) and National Institute of Intellectual Property (INPI). The inclusion criteria were published patents containing the keywords; 'microemulsion' and 'transdermal' in their title or abstract. 208 patents were found. However, only those patents which mentioned in their abstract or in their description the use of microemulsion system (object of invention) for pain treatment were selected. Were excluded duplicate patents and those that did not report pharmacological use of MEs specifically for pain treatment. Thus, sixteen patents were selected and described in the present study. EXPERT OPINION Patents were found that focused specifically on the development process of microemulsion systems, the inclusion of essential oils in microemulsions, which place microemulsions as delivery systems for NSAIDs and other substances, as well as microemulsions for transdermal administration. These studies reinforce the therapeutic applicability of MEs in the treatment of acute and chronic pain.
Collapse
Affiliation(s)
| | - Everton Moraes Lopes
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | - Laércio da Silva Gomes
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | - Ana Rita de Sousa França
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | - Boris Timah Acha
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | | | | |
Collapse
|
22
|
Da Silva BJM, Hage AAP, Silva EO, Rodrigues APD. Medicinal plants from the Brazilian Amazonian region and their antileishmanial activity: a review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:211-222. [DOI: 10.1016/j.joim.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/07/2018] [Indexed: 12/15/2022]
|
23
|
Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology. Int J Mol Sci 2018; 19:ijms19051511. [PMID: 29783680 PMCID: PMC5983702 DOI: 10.3390/ijms19051511] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022] Open
Abstract
The oleoresin of Copaifera trees has been widely used as a traditional medicine in Neotropical regions for thousands of years and remains a popular treatment for a variety of ailments. The copaiba resins are generally composed of a volatile oil made up largely of sesquiterpene hydrocarbons, such as β-caryophyllene, α-copaene, β-elemene, α-humulene, and germacrene D. In addition, the oleoresin is also made up of several biologically active diterpene acids, including copalic acid, kaurenoic acid, alepterolic acid, and polyalthic acid. This review presents a summary of the ecology and distribution of Copaifera species, the traditional uses, the biological activities, and the phytochemistry of copaiba oleoresins. In addition, several biomolecular targets relevant to the bioactivities have been implicated by molecular docking methods.
Collapse
|
24
|
Kian D, Lancheros CAC, Assolini JP, Arakawa NS, Veiga-Júnior VF, Nakamura CV, Pinge-Filho P, Conchon-Costa I, Pavanelli WR, Yamada-Ogatta SF, Yamauchi LM. Trypanocidal activity of copaiba oil and kaurenoic acid does not depend on macrophage killing machinery. Biomed Pharmacother 2018; 103:1294-1301. [PMID: 29864911 DOI: 10.1016/j.biopha.2018.04.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022] Open
Abstract
Activity, mechanisms of action, and toxicity of natural compounds have been investigated in a context in which knowledge on which pathway is activated remains crucial to understand the action mechanism of these bioactive substances when treating an infected host. Herein, we showed an ability of copaiba oil and kaurenoic acid to eliminate Trypanosoma cruzi forms by infected macrophages through other mechanisms in addition to nitric oxide, reactive oxygen species, iron metabolism, and antioxidant defense. Both compounds induced an anti-inflammatory response with an increase in IL-10 and TGF-β as well as a decrease in IL-12 production. Despite being able to modulate the immune response in host cells, the antimicrobial activity of copaiba oil and kaurenoic acid seems to be a direct action of the compounds on the parasites, causing their death.
Collapse
Affiliation(s)
- Danielle Kian
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - João Paulo Assolini
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Nilton Syogo Arakawa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Celso Vataru Nakamura
- Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Lucy Megumi Yamauchi
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
25
|
Xavier-Junior FH, Maciuk A, Rochelle do Vale Morais A, Alencar EDN, Garcia VL, Tabosa do Egito ES, Vauthier C. Development of a Gas Chromatography Method for the Analysis of Copaiba Oil. J Chromatogr Sci 2018; 55:969-978. [PMID: 28977501 DOI: 10.1093/chromsci/bmx065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/19/2017] [Indexed: 01/15/2023]
Abstract
A rapid, simple, precise and economic method for the quantification of main compounds of copaiba resin and essential oils (Copaifera langsdorffii Desf.) by gas chromatography (GC) has been developed and validated. Copaiba essential oil was extracted by hydrodistillation from the copaiba resin. Resin derivatization allowed the identification of diterpenes compounds. A gas chromatography-mass spectroscopy (GC/MS) method was developed to identify compounds composing the copaiba resin and essential oil. Then the GC/MS method was transposed to be used with a flame ionization detector (FID) and validated as a quantitative method. A good correlation between GC/MS and GC/FID was obtained favoring method transposition. The method showed satisfactory sensitivity, specificity, linearity, precision, accuracy, limit of detection and limit of quantitation for β-caryophyllene, α-humulene and caryophyllene oxide analyses in copaiba resin and essential oils. The main compounds identified in copaiba essential oil were β-bisabolene (23.6%), β-caryophyllene (21.7%) and α-bergamotene (20.5%). Copalic acid methyl ester (15.6%), β-bisabolene (12.3%), β-caryophyllene (7.9%), α-bergamotene (7.1%) and labd-8(20)-ene-15,18-dioic acid methyl ester (6.7%) were diterpenes identified from the derivatized copaiba resin. The proposed method is suitable for a reliable separation, identification and quantification of compounds present in copaiba resin and essential oil. It could be proposed as an analytical method for the analysis of copaiba oil fraction in raw and essential oil parent extracts and after they have been incorporate in pharmaceutical formulations.
Collapse
Affiliation(s)
- Francisco Humberto Xavier-Junior
- Institut Galien Paris Sud, CNRS UMR 8612, Faculté de Pharmacie, University Paris-Sud, Université Paris-Saclay, Five Rue J.B. Clément, 92296 Chatenay-Malabry Cedex, France.,Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD), Universidade Federal do Rio Grande do Norte, Av. Gal. Gustavo Cordeiro de Farias, S/N, Petrópolis 59010-180, Natal, RN, Brazil
| | - Alexandre Maciuk
- Laboratoire de Pharmacognosie - UMR CNRS 8076 BioCIS - Faculté de Pharmacie, Université Paris-Sud, 92296 Chatenay-Malabry Cedex, France
| | - Andreza Rochelle do Vale Morais
- Institut Galien Paris Sud, CNRS UMR 8612, Faculté de Pharmacie, University Paris-Sud, Université Paris-Saclay, Five Rue J.B. Clément, 92296 Chatenay-Malabry Cedex, France.,Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD), Universidade Federal do Rio Grande do Norte, Av. Gal. Gustavo Cordeiro de Farias, S/N, Petrópolis 59010-180, Natal, RN, Brazil
| | - Everton do Nascimento Alencar
- Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD), Universidade Federal do Rio Grande do Norte, Av. Gal. Gustavo Cordeiro de Farias, S/N, Petrópolis 59010-180, Natal, RN, Brazil
| | - Vera Lucia Garcia
- Universidade Estadual de Campinas (UNICAMP) - Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Rua Alexandre Cazelatto, 999, Vila Betel, Paulínia, SP, Brazil
| | - Eryvaldo Sócrates Tabosa do Egito
- Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD), Universidade Federal do Rio Grande do Norte, Av. Gal. Gustavo Cordeiro de Farias, S/N, Petrópolis 59010-180, Natal, RN, Brazil
| | - Christine Vauthier
- Institut Galien Paris Sud, CNRS UMR 8612, Faculté de Pharmacie,University Paris-Sud, Université Paris-Saclay, Five Rue J.B. Clément, 92296 Chatenay-Malabry Cedex, France
| |
Collapse
|
26
|
Development of Nanoemulsions to Enhance the Antileishmanial Activity of Copaifera paupera Oleoresins. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9781724. [PMID: 29850595 PMCID: PMC5904801 DOI: 10.1155/2018/9781724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/10/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
Based on the ethnopharmacological evidences about the antileishmanial activity of Copaifera spp. oleoresins, the effects of crude extracts and fractions of oleoresin of two specimens from Copaifera paupera were evaluated on Leishmania amazonensis and Leishmania infantum strains. The oleoresin rich in α-copaene (38.8%) exhibited the best activity against L. amazonensis (IC50 = 62.5 μg/mL) and against L. infantum (IC50 = 65.9 μg/mL). The sesquiterpene α-copaene isolated was tested alone and exhibited high antileishmanial activity in vitro with IC50 values for L. amazonensis and L. infantum of 17.2 and 11.4 μg/mL, respectively. In order to increase antileishmanial activity, nanoemulsions containing copaiba oleoresin and α-copaene were developed and assayed against L. amazonensis and L. infantum promastigotes. The nanoemulsion containing α-copaene (NANOCOPAEN) showed the best activity against both species, with IC50 of 2.5 and 2.2 μg/mL, respectively. This is the first report about the antileishmanial activity of α-copaene.
Collapse
|
27
|
Dhorm Pimentel de Moraes AR, Tavares GD, Soares Rocha FJ, de Paula E, Giorgio S. Effects of nanoemulsions prepared with essential oils of copaiba- and andiroba against Leishmania infantum and Leishmania amazonensis infections. Exp Parasitol 2018. [PMID: 29518448 DOI: 10.1016/j.exppara.2018.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plant products are an important source of bioactive agents against parasitic diseases, including leishmaniasis. Among these products, vegetable oils have gained ground in the pharmaceutical field. Here we report the development of nanoemulsions as a delivery system for copaiba and andiroba oils (nanocopa and nanoandi) in order to test their effects on Leishmania infantum and L. amazonensis. The nanocopa and nanoandi had an average particle size of 76.1 and 88.1, respectively with polydispersity index 0.14 to 0.16 and potential zeta -2.54 to -3.9. The data indicated toxic activity of nanocopa and nanoandi against promastigotes of both Leishmania species ultrastructural analyses by scanning electron microscopy revealed that exposition to nanoemulsions induced oval cell shape and retracted flagella. The treatment with nanocopa and nanoandi led to a reduction in L. infantum and L. amazonensis infection levels in macrophage cultures. The nanoemulsions treatment have significant beneficial effects on all the parameters evaluated in lesions induced by L. amazonensis (lesion size, parasite burden and histopathology) on BALB/c mice. The treatment of L. infantum-infected BALB/c mice with nanoemulsions also showed promising results reducing parasite burden in spleen and liver and improving histopathological features.
Collapse
Affiliation(s)
| | | | | | - Eneida de Paula
- Departamento de Bioquimica e Biologia Estrutural, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Selma Giorgio
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
28
|
Rodrigues de Santana F, de Paula Coelho C, Cardoso TN, Perez Hurtado EC, Roberti Benites N, Dalastra Laurenti M, Villano Bonamin L. Modulation of inflammation response to murine cutaneous Leishmaniasis by homeopathic medicines: Antimonium crudum 30cH. HOMEOPATHY 2018; 103:264-74. [DOI: 10.1016/j.homp.2014.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 07/25/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022]
Abstract
Background: Leishmaniasis is a zoonotic disease caused by protozoan parasites of the mononuclear phagocytic system. The modulation activity of these cells can interfere in the host/parasite relationship and influences the prognosis.Methods: We evaluated the effects of the homeopathic preparation Antimonium crudum 30cH on experimental infection induced by Leishmania (L.) amazonensis. Male Balb/c mice were inoculated with 2 × 106 Leishmania (L.) amazonensis promastigotes into the footpad and, after 48 h (acute phase) or 60 days (chronic phase), cell population of lymphocytes and phagocytes present in the peritoneal washing fluid and spleen were analyzed by flow cytometry and histopathology, with histometry of the subcutaneous primary lesion, local lymph node and spleen. Immunohistochemistry was performed to quantify CD3 (T lymphocyte), CD45RA (B lymphocyte) and CD11b (phagocytes) positive cells.Results: In treated mice, during the acute phase, there was significant increase of the macroscopic lesion, associated to inflammatory edema, as well increase in the number of free amastigotes and B lymphocytes inside the lesion. Increase of B lymphocytes (predominantly B-2 cells) was also seen in the local lymph node, spleen and peritoneum. In the chronic phase, the inflammatory process in the infection focus was reduced, with reduced phagocyte migration and peritoneal increase of B-1a cells (precursors of B-2 immunoglobulin producers cells) and T CD8+ cells.Conclusion: The treatment of mice with Antimonium crudum 30cH induced a predominantly B cell pattern of immune response in Leishmania (L.) amazonensis experimental infection, alongside the increase of free amastigote forms number in the infection site. The clinical significance of this study is discussed, further studies are suggested.
Collapse
Affiliation(s)
- Fabiana Rodrigues de Santana
- Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
| | - Cidéli de Paula Coelho
- Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
- Laboratory of Veterinary Pathology, University of Santo Amaro, São Paulo, Brazil
| | - Thayná Neves Cardoso
- Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
| | - Elizabeth Cristina Perez Hurtado
- Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
- Laboratory of Immunology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Leoni Villano Bonamin
- Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
- Laboratory of Veterinary Pathology, University of Santo Amaro, São Paulo, Brazil
| |
Collapse
|
29
|
LC–MS characterization, anti-kinetoplastide and cytotoxic activities of natural products from Eugenia jambolana Lam. and Eugenia uniflora. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Leishmanicidal effect of antiparasitic photodynamic therapy—ApPDT on infected macrophages. Lasers Med Sci 2017; 32:1959-1964. [DOI: 10.1007/s10103-017-2292-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022]
|
31
|
Cardoso PCDS, Rocha CAMD, Leal MF, Bahia MDO, Alcântara DDFÁ, Santos RAD, Gonçalves NDS, Ambrósio SR, Cavalcanti BC, Moreira-Nunes CA, Pessoa CDÓ, Burbano RMR. Effect of diterpenoid kaurenoic acid on genotoxicity and cell cycle progression in gastric cancer cell lines. Biomed Pharmacother 2017; 89:772-780. [PMID: 28273639 DOI: 10.1016/j.biopha.2017.02.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 12/23/2022] Open
Abstract
The goal of our study was to evaluate the effect of kaurenoic acid, obtained from copaiba oil resin, in gastric cancer (GC) and a normal mucosa of stomach (MNP01) cell lines. The compound was tested at concentrations of 2.5, 5, 10, 30 and 60μg/mL. Comet and micronucleus assays were used to access its potential genotoxicity in vitro. Moreover, we evaluated the effect of kaurenoic acid in cell cycle progression and in the transcription of genes involved in the control of the cell cycle: MYC, CCND1, BCL2, CASP3, ATM, CHK2 and TP53. Kaurenoic acid induced an increase on cell DNA damage or micronucleus frequencies on GC cell lines in a dose-dependent manner. The GC and MNP01 cell lines entering DNA synthesis and mitosis decreased significantly with kaurenoic acid treatment, and had an increased growth phase compared with non-treated cells. The treatment induced apoptosis (or necrosis) even at a concentration of 2.5μg/mL in relation to non-treated cells. GC cell lines presented reduced MYC, CCND1, BCL2 and CASP3 transcription while ATM, CHK2 and TP53 increased in transcription in relation to non-treated cells, especially at a concentration above 10μg/mL. The gene transcription in the MNP01 (non-treated non-cancer cell line) was designated as a calibrator for all the GC cell lines. In conclusion, our results showed that kaurenoic acid obtained from Copaifera induces DNA damage and increases the micronuclei frequency in a dose-dependent manner in GC cells, with a significant genotoxicity observed above the concentration of 5μg/mL. Moreover, this compound seems to be able to induce cell cycle arrest and apoptosis in GC cells.
Collapse
Affiliation(s)
| | - Carlos Alberto Machado da Rocha
- Federal Institute of Education, Science and Technology of Pará (IFPA), Av. Almirante Barroso, 1155 (Marco), CEP 66093-020, Belém, Pará, Brazil.
| | - Mariana Ferreira Leal
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Marcelo de Oliveira Bahia
- Human Cytogenetic Laboratory, Biological Science Institute, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | | | - Raquel Alves Dos Santos
- Laboratory of Genetics and Molecular Biology, University of Franca (UNIFRAN), Franca, São Paulo, Brazil
| | | | | | - Bruno Coêlho Cavalcanti
- Department of Physiology and Pharmacology, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Caroline Aquino Moreira-Nunes
- Human Cytogenetic Laboratory, Biological Science Institute, Federal University of Pará (UFPA), Belém, Pará, Brazil; Laboratory of Genetics of Hemoglobinopathies and Hematologic Diseases, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Claudia do Ó Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Rommel Mário Rodríguez Burbano
- Human Cytogenetic Laboratory, Biological Science Institute, Federal University of Pará (UFPA), Belém, Pará, Brazil; Hospital Ophir Loyola (HOL), Belém, Pará, Brazil.
| |
Collapse
|
32
|
Gupta PK, Jaiswal AK, Asthana S, Teja B V, Shukla P, Shukla M, Sagar N, Dube A, Rath SK, Mishra PR. Synergistic enhancement of parasiticidal activity of amphotericin B using copaiba oil in nanoemulsified carrier for oral delivery: an approach for non-toxic chemotherapy. Br J Pharmacol 2015; 172:3596-610. [PMID: 25825339 DOI: 10.1111/bph.13149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to devise a nanoemulsified carrier system (CopNEC) to improve the oral delivery of amphotericin B (AmB) by increasing its oral bioavailability and synergistically enhance its antileishmanial activity with copaiba oil (Cop). EXPERIMENTAL APPROACH The AmB encapsulated NEC (CopNEC-AmB) comprised of Cop, d-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine was prepared by high-pressure homogenization method. Stability study of CopNEC-AmB was carried out in simulated gastric fluid and simulated intestinal fluid. The CopNEC-AmB and plain AmB were compared as regards their in vitro antileishmanial activity, pharmacokinetics, organ distribution and toxicity. KEY RESULTS The optimal CopNEC-AmB had a small globule size, low polydispersity index, high ζ potential and encapsulation efficiency. The high resolution transmission electron microscopy illustrated spherical particle geometry with homogeny in their sizes. The optimal CopNEC-AmB was found to be stable in gastrointestinal fluids showing insignificant changes in globule size and encapsulation efficiency. The AUC0-48 value of CopNEC-AmB in rats was significantly improved showing 7.2-fold higher oral bioavailability than free drug. The in vitro antileishmanial activity of CopNEC-AmB was significantly higher than that of the free drug as Cop synergistically enhanced the antileishmanial effect of AmB by causing drastic changes in the morphology of Leishmania parasite and rupturing its plasma membrane. The CopNEC-AmB showed significantly less haemolytic toxicity and cytotoxicity and did not change the histopathology of kidney tissues as compared with AmB alone. CONCLUSIONS AND IMPLICATIONS This prototype CopNEC formulation showed improved bioavailability and had a non-toxic synergistic effect on the antileishmanial activity of AmB.
Collapse
Affiliation(s)
- Pramod K Gupta
- Pharmaceutics Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Anil K Jaiswal
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Shalini Asthana
- Pharmaceutics Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Venkatesh Teja B
- Pharmaceutics Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Prashant Shukla
- Pharmaceutics Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Minakshi Shukla
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Neeti Sagar
- Toxicology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Anuradha Dube
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Srikanta K Rath
- Toxicology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Prabhat R Mishra
- Pharmaceutics Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
33
|
Rodrigues KADF, Amorim LV, Dias CN, Moraes DFC, Carneiro SMP, Carvalho FADA. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2015; 160:32-40. [PMID: 25460590 DOI: 10.1016/j.jep.2014.11.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/11/2014] [Accepted: 11/13/2014] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Syzygium cumini (L.) Skeels (Myrtaceae), commonly known as "jambolão" in Brazil is widely used in folk medicine against leishmaniasis, inflammation, chronic diarrhea, and ulcers. It is one of the most commonly used plants for the treatment of diabetes worldwide. In previous studies, Syzygium cumini was shown to possess antihyperlipidemic and anti-allergic properties, and to exhibit good performance as an antimicrobial agent against bacteria, fungi, and protozoa parasites of the genus Leishmania and Trypanosoma. This study was aimed at evaluating the effects of S. cumini essential oil (ScEO) and its major component α-pinene on Leishmania (Leishmania) amazonensis, as well as their cytotoxicity and possible mechanisms of action. MATERIALS AND METHODS To evaluate the anti-proliferative effect on Leishmania, effects on promastigote and axenic amastigote forms were assessed using tetrazolium salt (MTT) assay. The intramacrophagic amastigotes were exposed to ScEO and α-pinene to determine the survival index. To gain insight into the mechanism of action involved in the effect on the samples, we evaluated the modulation of macrophage activation state by observing structural (phagocytic and lysosomal activities) and cellular (nitric oxide increase) changes. To assess the safety profile of ScEO and α-pinene, murine macrophages and human red blood cells were treated with ScEO and α-pinene and the selectivity index was calculated for each treatment. RESULTS α-Pinene was effective against Leishmania amazonensis promastigote forms, with a half-maximal inhibitory concentration (IC50) value of 19.7µg/mL. α-Pinene was more active (IC50 values of 16.1 and 15.6µg/mL against axenic and intracellular amastigotes, respectively) than ScEO (IC50 values of 43.9 and 38.1µg/mL against axenic and intracellular amastigotes, respectively). Our results showed that the anti-Leishmania effects were mediated by immunomodulatory activity, as evidenced by the observed increases in both phagocytic and lysosomal activity, and the elevated NO levels. ScEO and α-pinene exhibited low cytotoxicity against murine macrophages and human erythrocytes. The 50% cytotoxicity concentration (CC50) values for the macrophages in the MTT assay were 614.1 and 425.2µg/mL for ScEO and α-pinene, respectively, while the corresponding half-maximal hemolytic concentration (HC50) values were 874.3 and 233.3µg/mL. CONCLUSIONS Taken together, the results demonstrate that ScEO and its major constituent α-pinene have significant anti-Leishmania activity, modulated by macrophage activation, with acceptable levels of cytotoxicity in murine macrophages and human erythrocytes. Further work is warranted, involving more in-depth mechanistic studies and in vivo investigations.
Collapse
Affiliation(s)
| | - Layane Valéria Amorim
- Graduate Program in Pharmacology, Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | - Clarice Noleto Dias
- Laboratory of Pharmacognosy II, Department of Pharmacy, Federal University of Maranhão, 65085-580 São Luís, MA, Brazil.
| | | | - Sabrina Maria Portela Carneiro
- Graduate Program in Pharmacology, Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | | |
Collapse
|
34
|
Effect of aqueous extract of Azadirachta indica A. Juss (neem) leaf on oocyte maturation, oviposition, reproductive potentials and embryonic development of a freshwater fish ectoparasite Argulus bengalensis Ramakrishna, 1951 (Crustacea: Branchiura). Parasitol Res 2014; 113:4641-50. [DOI: 10.1007/s00436-014-4155-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/23/2014] [Indexed: 01/25/2023]
|
35
|
Santos AOD, Izumi E, Ueda-Nakamura T, Dias-Filho BP, Veiga-Júnior VFD, Nakamura CV. Antileishmanial activity of diterpene acids in copaiba oil. Mem Inst Oswaldo Cruz 2013; 108:59-64. [PMID: 23440116 PMCID: PMC3974318 DOI: 10.1590/s0074-02762013000100010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/05/2012] [Indexed: 12/26/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease. According to the World Health Organization, there are approximately 1.5-two million new cases of cutaneous leishmaniasis each year worldwide. Chemotherapy against leishmaniasis is based on pentavalent antimonials, which were developed more than a century ago. The goals of this study were to investigate the antileishmanial activity of diterpene acids in copaiba oil, as well as some possible targets of their action against Leishmania amazonensis. Methyl copalate and agathic, hydroxycopalic, kaurenoic, pinifolic and polyaltic acids isolated from Copaifera officinales oleoresins were utilised. Ultrastructural changes and the specific organelle targets of diterpenes were investigated with electron microscopy and flow cytometry, respectively. All compounds had some level of activity against L. amazonensis. Hydroxycopalic acid and methyl copalate demonstrated the most activity against promastigotes and had 50% inhibitory concentration (IC50) values of 2.5 and 6.0 µg/mL, respectively. However, pinifolic and kaurenoic acid demonstrated the most activity against axenic amastigote and had IC50 values of 3.5 and 4.0 µg/mL, respectively. Agathic, kaurenoic and pinifolic acid caused significant increases in plasma membrane permeability and mitochondrial membrane depolarisation of the protozoan. In conclusion, copaiba oil and its diterpene acids should be explored for the development of new antileishmanial drugs.
Collapse
|
36
|
Trans- β -Caryophyllene: An Effective Antileishmanial Compound Found in Commercial Copaiba Oil (Copaifera spp.). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:761323. [PMID: 23864897 PMCID: PMC3705974 DOI: 10.1155/2013/761323] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/01/2013] [Indexed: 11/28/2022]
Abstract
This study investigated the leishmanicidal activity against Leishmania amazonensis of four commercial oils from Copaifera spp. named as C1, C2, C3, and C4, the sesquiterpene and diterpene pools obtained from distilling C4, and isolated β-caryophyllene (CAR). Copaiba oils chemical compositions were analyzed by gas chromatography and correlated with biological activities. Diterpenes-rich oils C2 and C3 showed antipromastigote activity. Sesquiterpenes-rich C1 and C4, and isolated CAR presented a dose-dependent activity against intracellular amastigotes, with IC50s of 2.9 µg/mL, 2.3 µg/mL, and 1.3 µg/mL (6.4 µM), respectively. Based on the highest antiamastigote activity and the low toxicity to the host cells, C4 was steamdistillated to separate pools of sesquiterpenes and diterpenes. Both pools were less active against L. amazonensis and more toxic for the macrophages than the whole C4 oil. The leishmanicidal activity of C3 and C4 oils, as well as C4 fractions and CAR, appears to be independent of nitric oxide production by macrophages. This study pointed out β-caryophyllene as an effective antileishmanial compound and also to its role as potential chemical marker in copaiba oils or fractions derived thereof, aiming further development of this rainforest raw material for leishmaniasis therapy.
Collapse
|
37
|
Costa-Machado AR, Bastos JK, de Freitas LA. Dynamic maceration of Copaifera langsdorffi leaves: a technological study using fractional factorial design. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2012005000116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Lopes MV, Desoti VC, Caleare ADO, Ueda-Nakamura T, Silva SO, Nakamura CV. Mitochondria Superoxide Anion Production Contributes to Geranylgeraniol-Induced Death in Leishmania amazonensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:298320. [PMID: 23304195 PMCID: PMC3529489 DOI: 10.1155/2012/298320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/22/2022]
Abstract
Here we demonstrate the activity of geranylgeraniol, the major bioactive constituent from seeds of Bixa orellana, against Leishmania amazonensis. Geranylgeraniol was identified through (1)H and (13)C nuclear magnetic resonance imaging and DEPT. The compound inhibited the promastigote and intracellular amastigote forms, with IC(50) of 11 ± 1.0 and 17.5 ± 0.7 μg/mL, respectively. This compound was also more toxic to parasites than to macrophages and did not cause lysis in human blood cells. Morphological and ultrastructural changes induced by geranylgeraniol were observed in the protozoan by electronic microscopy and included mainly mitochondria alterations and an abnormal chromatin condensation in the nucleus. These alterations were confirmed by Rh 123 and TUNEL assays. Additionally, geranylgeraniol induces an increase in superoxide anion production. Collectively, our in vitro studies indicate geranylgeraniol as a selective antileishmanial that appears to be mediated by apoptosis-like cell death.
Collapse
Affiliation(s)
- Milene Valéria Lopes
- Programa de Pós-graduação em Ciências Farmacêuticas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Bloco B-08, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Vânia Cristina Desoti
- Programa de Pós-graduação em Ciências Farmacêuticas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Bloco B-08, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Angelo de Oliveira Caleare
- Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Tânia Ueda-Nakamura
- Programa de Pós-graduação em Ciências Farmacêuticas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Bloco B-08, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Sueli Oliveira Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Bloco B-08, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-graduação em Ciências Farmacêuticas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Bloco B-08, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
39
|
Almeida MR, Darin JDC, Hernandes LC, de Souza Ramos MF, Antunes LMG, de Freitas O. Genotoxicity assessment of Copaiba oil and its fractions in Swiss mice. Genet Mol Biol 2012; 35:664-72. [PMID: 23055807 PMCID: PMC3459418 DOI: 10.1590/s1415-47572012005000052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/21/2012] [Indexed: 11/22/2022] Open
Abstract
Copaiba oil-resin, extracted from the trunk of Copaifera, and traditionally used in folk medicine in the treatment of various disorders, has been shown to be an effective antiinflamatory, antitumor, antitetanus, antiseptic and anti-blenorrhagea agent. As, there are few studies evaluating its genotoxicity, this aspect of the commercial oil-resin, and its volatile and resinous fractions, were evaluated in mice by comet assay and micronucleus (MN) test. A single dose of oil resin, volatile or resin fractions (500; 1,000 or 2,000 mg/kg b.w.) was administered by gavage. The chemical compositions of Copaiba oil resin and its fractions was analyzed by gas chromatography. According to comet assaying, treatment with either one did not increase DNA damage, and as to MN testing, there was no alteration in the incidence of micronucleated polychromatic erythrocytes. Chromatographic analysis of the oil-resin itself revealed sesquiterpenes, diterpenic carboxylic acid methyl esters and high levels of β-caryophyllene. Thus, it can be assumed that the oil resin and volatile and resinous fractions from the commercial product are not genotoxic or mutagenic.
Collapse
Affiliation(s)
- Mara Ribeiro Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Leandro LM, de Sousa Vargas F, Barbosa PCS, Neves JKO, da Silva JA, da Veiga-Junior VF. Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules 2012; 17:3866-89. [PMID: 22466849 PMCID: PMC6269112 DOI: 10.3390/molecules17043866] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 12/27/2022] Open
Abstract
Copaiba oleoresins are exuded from the trunks of trees of the Copaifera species (Leguminosae-Caesalpinoideae). This oleoresin is a solution of diterpenoids, especially, mono- and di-acids, solubilized by sesquiterpene hydrocarbons. The sesquiterpenes and diterpenes (labdane, clerodane and kaurane skeletons) are different for each Copaifera species and have been linked to several reported biological activities, ranging from anti-tumoral to embriotoxic effects. This review presents all the substances already described in this oleoresin, together with structures and activities of its main terpenoids.
Collapse
Affiliation(s)
- Lidiam Maia Leandro
- Chemistry Department, Amazonas Federal University, Av. Gal. Rodrigo Octávio, 6.200, Japiim, Manaus-AM, 69080-900, Brazil
| | - Fabiano de Sousa Vargas
- Chemistry Department, Amazonas Federal University, Av. Gal. Rodrigo Octávio, 6.200, Japiim, Manaus-AM, 69080-900, Brazil
| | - Paula Cristina Souza Barbosa
- Chemistry Department, Amazonas Federal University, Av. Gal. Rodrigo Octávio, 6.200, Japiim, Manaus-AM, 69080-900, Brazil
| | - Jamilly Kelly Oliveira Neves
- Graduate Program on Pharmaceutical Sciences, Paraíba State University, Rua Baraúnas, 351, Bairro Universitário, Campina Grande-PB, 58429-500, Brazil
| | - José Alexsandro da Silva
- Graduate Program on Pharmaceutical Sciences, Paraíba State University, Rua Baraúnas, 351, Bairro Universitário, Campina Grande-PB, 58429-500, Brazil
| | - Valdir Florêncio da Veiga-Junior
- Chemistry Department, Amazonas Federal University, Av. Gal. Rodrigo Octávio, 6.200, Japiim, Manaus-AM, 69080-900, Brazil
- Author to whom correspondence should be addressed; ; Tel.: +55-92-9903-6771
| |
Collapse
|