1
|
Yanagawa Y, Singh U. Diversity and Plasticity of Virulent Characteristics of Entamoeba histolytica. Trop Med Infect Dis 2023; 8:tropicalmed8050255. [PMID: 37235303 DOI: 10.3390/tropicalmed8050255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The complexity of clinical syndromes of amebiasis, caused by the parasite Entamoeba histolytica, stems from the intricate interplay between the host immune system, the virulence of the invading parasite, and the surrounding environment. Although there is still a relative paucity of information about the precise relationship between virulence factors and the pathogenesis of Entamoeba histolytica, by accumulating data from clinical and basic research, researchers have identified essential pathogenic factors that play a critical role in the pathogenesis of amebiasis, providing important insights into disease development through animal models. Moreover, the parasite's genetic variability has been associated with differences in virulence and disease outcomes, making it important to fully understand the epidemiology and pathogenesis of amebiasis. Deciphering the true mechanism of disease progression in humans caused by this parasite is made more difficult through its ability to demonstrate both genomic and pathological plasticity. The objective of this article is to underscore the heterogeneous nature of disease states and the malleable virulence characteristics in experimental models, while also identifying persistent scientific issues that need to be addressed.
Collapse
Affiliation(s)
- Yasuaki Yanagawa
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Upinder Singh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Uribe-Querol E, Rosales C. Immune Response to the Enteric Parasite Entamoeba histolytica. Physiology (Bethesda) 2021; 35:244-260. [PMID: 32490746 DOI: 10.1152/physiol.00038.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite responsible for amoebiasis, a disease with a high prevalence in developing countries. Establishing an amoebic infection involves interplay between pathogenic factors for invasion and tissue damage, and immune responses for protecting the host. Here, we review the pathogenicity of E. histolytica and summarize the latest knowledge on immune response and immune evasion mechanisms during amoebiasis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Rangel-Castañeda IA, Carranza-Rosales P, Guzmán-Delgado NE, Hernández-Hernández JM, González-Pozos S, Pérez-Rangel A, Castillo-Romero A. Curcumin Attenuates the Pathogenicity of Entamoeba histolytica by Regulating the Expression of Virulence Factors in an Ex-Vivo Model Infection. Pathogens 2019; 8:pathogens8030127. [PMID: 31443160 PMCID: PMC6789811 DOI: 10.3390/pathogens8030127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Infection with the enteric protozoan Entamoeba histolytica is still a serious public health problem, especially in developing countries. Amoebic liver abscess (ALA) is the most common extraintestinal manifestation of the amoebiasis, and it can lead to serious and potentially life-threatening complications in some people. ALA can be cured by metronidazole (MTZ); however, because it has poor activity against luminal trophozoites, 40–60% of treated patients get repeated episodes of invasive disease and require repeated treatments that can induce resistance to MTZ, this may emerge as an important public health problem. Anti-virulence strategies that impair the virulence of pathogens are one of the novel approaches to solving the problem. In this study, we found that low doses of curcumin (10 and 50 μM) attenuate the virulence of E. histolytica without affecting trophozoites growth or triggering liver injury. Curcumin (CUR) decreases the expression of genes associated with E. histolytica virulence (gal/galnac lectin, ehcp1, ehcp5, and amoebapore), and is correlated with significantly lower amoebic invasion. In addition, oxidative stress is critically involved in the etiopathology of amoebic liver abscess; our results show no changes in mRNA expression levels of superoxide dismutase (SOD) and catalase (CAT) after E. histolytica infection, with or without CUR. This study provides clear evidence that curcumin could be an anti-virulence agent against E. histolytica, and makes it an attractive potential starting point for effective treatments that reduce downstream amoebic liver abscess.
Collapse
Affiliation(s)
- Itzia Azucena Rangel-Castañeda
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Mexico
| | | | - José Manuel Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Sirenia González-Pozos
- Unidad de Microscopía Electrónica LaNSE, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Armando Pérez-Rangel
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico.
| |
Collapse
|
4
|
Development of a Novel Ex-vivo 3D Model to Screen Amoebicidal Activity on Infected Tissue. Sci Rep 2019; 9:8396. [PMID: 31182753 PMCID: PMC6557822 DOI: 10.1038/s41598-019-44899-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/28/2019] [Indexed: 01/12/2023] Open
Abstract
Amoebiasis is a parasitic disease that causes thousands of deaths every year, its adverse effects and resistance to conventional treatments have led to the search of new treatment options, as well as the development of novel screening methods. In this work, we implemented a 3D model of intestine and liver slices from hamsters that were infected ex vivo with virulent E. histolytica trophozoites. Results show preserved histology in both uninfected tissues as well as ulcerations, destruction of the epithelial cells, and inflammatory reaction in intestine slices and formation of micro abscesses, and the presence of amoebae in the sinusoidal spaces and in the interior of central veins in liver slices. The three chemically synthetized compounds T-001, T-011, and T-016, which act as amoebicides in vitro, were active in both infected tissues, as they decreased the number of trophozoites, and provoked death by disintegration of the amoeba, similar to metronidazole. However, compound T-011 induced signs of cytotoxicity to liver slices. Our results suggest that ex vivo cultures of precision-cut intestinal and liver slices represent a reliable 3D approach to evaluate novel amoebicidal compounds, and to simultaneously detect their toxicity, while reducing the number of experimental animals commonly required by other model systems.
Collapse
|
5
|
O-deGlcNAcylation is required for Entamoeba histolytica-induced HepG2 cell death. Microb Pathog 2018; 123:285-295. [DOI: 10.1016/j.micpath.2018.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
|
6
|
Peck BCE, Shanahan MT, Singh AP, Sethupathy P. Gut Microbial Influences on the Mammalian Intestinal Stem Cell Niche. Stem Cells Int 2017; 2017:5604727. [PMID: 28904533 PMCID: PMC5585682 DOI: 10.1155/2017/5604727] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
The mammalian intestinal epithelial stem cell (IESC) niche is comprised of diverse epithelial, immune, and stromal cells, which together respond to environmental changes within the lumen and exert coordinated regulation of IESC behavior. There is growing appreciation for the role of the gut microbiota in modulating intestinal proliferation and differentiation, as well as other aspects of intestinal physiology. In this review, we evaluate the diverse roles of known niche cells in responding to gut microbiota and supporting IESCs. Furthermore, we discuss the potential mechanisms by which microbiota may exert their influence on niche cells and possibly on IESCs directly. Finally, we present an overview of the benefits and limitations of available tools to study niche-microbe interactions and provide our recommendations regarding their use and standardization. The study of host-microbe interactions in the gut is a rapidly growing field, and the IESC niche is at the forefront of host-microbe activity to control nutrient absorption, endocrine signaling, energy homeostasis, immune response, and systemic health.
Collapse
Affiliation(s)
- Bailey C. E. Peck
- Department of Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael T. Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ajeet P. Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Ximénez C, González E, Nieves M, Magaña U, Morán P, Gudiño-Zayas M, Partida O, Hernández E, Rojas-Velázquez L, García de León MC, Maldonado H. Differential expression of pathogenic genes of Entamoeba histolytica vs E. dispar in a model of infection using human liver tissue explants. PLoS One 2017; 12:e0181962. [PMID: 28771523 PMCID: PMC5542602 DOI: 10.1371/journal.pone.0181962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
We sought to establish an ex vivo model for examining the interaction of E. histolytica with human tissue, using precision-cut liver slices (PCLS) from donated organs. E. histolytica- or E. dispar-infected PCLS were analyzed at different post-infection times (0, 1, 3, 24 and 48 h) to evaluate the relation between tissue damage and the expression of genes associated with three factors: a) parasite survival (peroxiredoxin, superoxide dismutase and 70 kDa heat shock protein), b) parasite virulence (EhGal/GalNAc lectin, amoebapore, cysteine proteases and calreticulin), and c) the host inflammatory response (various cytokines). Unlike E. dispar (non-pathogenic), E. histolytica produced some damage to the structure of hepatic parenchyma. Overall, greater expression of virulence genes existed in E. histolytica-infected versus E. dispar-infected tissue. Accordingly, there was an increased expression of EhGal/GalNAc lectin, Ehap-a and Ehcp-5, Ehcp-2, ehcp-1 genes with E. histolytica, and a decreased or lack of expression of Ehcp-2, and Ehap-a genes with E. dispar. E. histolytica-infected tissue also exhibited an elevated expression of genes linked to survival, principally peroxiredoxin, superoxide dismutase and Ehhsp-70. Moreover, E. histolytica-infected tissue showed an overexpression of some genes encoding for pro-inflammatory interleukins (ILs), such as il-8, ifn-γ and tnf-α. Contrarily, E. dispar-infected tissue displayed higher levels of il-10, the gene for the corresponding anti-inflammatory cytokine. Additionally, other genes were investigated that are important in the host-parasite relationship, including those encoding for the 20 kDa heat shock protein (HSP-20), the AIG-1 protein, and immune dominant variable surface antigen, as well as for proteins apparently involved in mechanisms for the protection of the trophozoites in different environments (e.g., thioredoxin-reductase, oxido-reductase, and 9 hypothetical proteins). Some of the hypothetical proteins evidenced interesting overexpression rates, however we should wait to their characterization. This finding suggest that the present model could be advantageous for exploring the complex interaction between trophozoites and hepatocytes during the development of ALA, particularly in the initial stages of infection.
Collapse
Affiliation(s)
- Cecilia Ximénez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
- * E-mail:
| | - Enrique González
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Miriam Nieves
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Ulises Magaña
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Patricia Morán
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Marco Gudiño-Zayas
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Oswaldo Partida
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Eric Hernández
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Liliana Rojas-Velázquez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | | | - Héctor Maldonado
- Sub direction of Pathology, National Institute of Cancerology, México City, México
| |
Collapse
|
8
|
Avalos-Alanís FG, Hernández-Fernández E, Carranza-Rosales P, López-Cortina S, Hernández-Fernández J, Ordóñez M, Guzmán-Delgado NE, Morales-Vargas A, Velázquez-Moreno VM, Santiago-Mauricio MG. Synthesis, antimycobacterial and cytotoxic activity of α,β-unsaturated amides and 2,4-disubstituted oxazoline derivatives. Bioorg Med Chem Lett 2017; 27:821-825. [PMID: 28117200 DOI: 10.1016/j.bmcl.2017.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 02/02/2023]
Abstract
The synthesis of six α,β,-unsaturated amides and six 2,4-disubstituted oxazolines derivatives and their evaluation against two Mycobacterium tuberculosis strains (sensitive H37Rv and a resistant clinical isolate) is reported. 2,4-Disubstituted oxazolines (S)-3b,d,e were the most active in the sensitive strain with a MIC of 14.2, 13.6 and 10.8μM, respectively, and the compounds (S)-3d,f were the most active against resistant strain with a MIC of 6.8 and 7.4μM. The ex-vivo evaluation of hepatotoxicity on precision-cut rat liver slices was also tested for the α,β-unsaturated amides (S)-2b and (S)-2d,f and for the oxazolines (S)-3b and (S)-3d,f at different concentrations (5, 15 and 30μg/mL). The results indicate that these compounds possess promising antimycobacterial activity and at the same time are not hepatotoxic. These findings open the possibility for development of new drugs against tuberculosis.
Collapse
Affiliation(s)
- Francisco G Avalos-Alanís
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66400 San Nicolás de los Garza, Nuevo León, Mexico
| | - Eugenio Hernández-Fernández
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66400 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico.
| | - Susana López-Cortina
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66400 San Nicolás de los Garza, Nuevo León, Mexico
| | - Jorge Hernández-Fernández
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66400 San Nicolás de los Garza, Nuevo León, Mexico
| | - Mario Ordóñez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209 Cuernavaca, Morelos, Mexico
| | - Nancy E Guzmán-Delgado
- Unidad Médica de Alta Especialidad 34, Instituto Mexicano del Seguro Social, 64730 Monterrey, Nuevo León, Mexico
| | | | | | - María G Santiago-Mauricio
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| |
Collapse
|
9
|
Entamoeba histolytica: Overexpression of the gal/galnac lectin, ehcp2 and ehcp5 genes in an in vivo model of amebiasis. Parasitol Int 2016; 65:665-667. [PMID: 27616150 DOI: 10.1016/j.parint.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/18/2016] [Accepted: 08/28/2016] [Indexed: 11/21/2022]
Abstract
The parasite Entamoeba histolytica causes intestinal amebiasis and amebic liver abscess as its main extraintestinal manifestation. To study the in vivo events related to inflammation and the interactions between hosts and parasites during amebiasis, we designed a novel model of host-parasite interactions using cellulose membrane dialysis bags containing E. histolytica trophozoites. A bag is placed into the hamster peritoneal cavity, as has been reported in previous studies of programmed cell death (PCD) in E. histolytica trophozoites. To determine if virulence factors such as cysteine proteinases (EhCP2 and EhCP5) and Gal/GalNAc lectin could be involved in the host-parasite interaction using this model, we examined the relative expression of the ehcp2 and ehcp5 genes and the carbohydrate recognition domain (crd) of Gal/GalNAc lectin using real-time quantitative PCR (qRT-PCR). All analyzed genes were over-expressed 0.5h after the initiation of the host-parasite interaction and were then progressively down-regulated. However, Gal/GalNAc lectin had the greatest increase in gene expression 1.5h after host-parasite interaction; Gal/GalNAc lectin had a 250-fold increase with respect to the axenically grown trophozoites, which over-express Gal/GalNAc lectin in in vivo models. These results support the important role of these molecules in the initiation of cell damage by E. histolytica.
Collapse
|
10
|
|
11
|
Ralston KS. Taking a bite: Amoebic trogocytosis in Entamoeba histolytica and beyond. Curr Opin Microbiol 2015; 28:26-35. [PMID: 26277085 DOI: 10.1016/j.mib.2015.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 12/28/2022]
Abstract
Entamoeba histolytica is a diarrheal pathogen with the ability to cause profound host tissue damage. This organism possesses contact-dependent cell killing activity, which is likely to be a major contributor to tissue damage. E. histolytica trophozoites were recently shown to ingest fragments of living human cells. It was demonstrated that this process, termed amoebic trogocytosis, contributes to cell killing. Recent advances in ex vivo and 3-D cell culture approaches have shed light on mechanisms for tissue destruction by E. histolytica, allowing amoebic trogocytosis to be placed in the context of additional host and pathogen mediators of tissue damage. In addition to its relevance to pathogenesis of amoebiasis, an appreciation is emerging that intercellular nibbling occurs in many organisms, from protozoa to mammals.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, USA.
| |
Collapse
|
12
|
Carranza-Torres IE, Guzmán-Delgado NE, Coronado-Martínez C, Bañuelos-García JI, Viveros-Valdez E, Morán-Martínez J, Carranza-Rosales P. Organotypic culture of breast tumor explants as a multicellular system for the screening of natural compounds with antineoplastic potential. BIOMED RESEARCH INTERNATIONAL 2015; 2015:618021. [PMID: 26075250 PMCID: PMC4449881 DOI: 10.1155/2015/618021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 01/11/2023]
Abstract
Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control) decreased significantly (P < 0.05); however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor.
Collapse
Affiliation(s)
- Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720 Monterrey, NL, Mexico
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 64460 San Nicolás de los Garza, NL, Mexico
| | - Nancy Elena Guzmán-Delgado
- Unidad Médica de Alta Especialidad No. 34, Instituto Mexicano del Seguro Social, 64730 Monterrey, NL, Mexico
| | - Consuelo Coronado-Martínez
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720 Monterrey, NL, Mexico
| | | | - Ezequiel Viveros-Valdez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 64460 San Nicolás de los Garza, NL, Mexico
| | | | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720 Monterrey, NL, Mexico
| |
Collapse
|
13
|
Huat LB, Garcia AO, Ning TZ, Kin WW, Noordin R, Azham SSA, Jie LZ, Ching GC, Chong FP, Dam PC. Entamoeba histolytica acetyl-CoA synthetase: biomarker of acute amoebic liver abscess. Asian Pac J Trop Biomed 2014; 4:446-50. [PMID: 25182945 DOI: 10.12980/apjtb.4.2014c1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To characterize the Entamoeba histolytica (E. histolytica) antigen(s) recognized by moribound amoebic liver abscess hamsters. METHODS Crude soluble antigen of E. histolytica was probed with sera of moribund hamsters in 1D- and 2D-Western blot analyses. The antigenic protein was then sent for tandem mass spectrometry analysis. The corresponding gene was cloned and expressed in Escherichia coli BL21-AI to produce the recombinant E. histolytica ADP-forming acetyl-CoA synthetase (EhACS) protein. A customised ELISA was developed to evaluate the sensitivity and specificity of the recombinant protein. RESULTS A ∼75 kDa protein band with a pI value of 5.91-6.5 was found to be antigenic; and not detected by sera of hamsters in the control group. Tandem mass spectrometry analysis revealed the protein to be the 77 kDa E. histolytica ADP-forming acetyl-CoA synthetase (EhACS). The customised ELISA results revealed 100% sensitivity and 100% specificity when tested against infected (n=31) and control group hamsters (n=5) serum samples, respectively. CONCLUSIONS This finding suggested the significant role of EhACS as a biomarker for moribund hamsters with acute amoebic liver abscess (ALA) infection. It is deemed pertinent that future studies explore the potential roles of EhACS in better understanding the pathogenesis of ALA; and in the development of vaccine and diagnostic tests to control ALA in human populations.
Collapse
Affiliation(s)
- Lim Boon Huat
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Alfonso Olivos Garcia
- Departmento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F., Mexico
| | - Tan Zi Ning
- Department of Medicine, Allianze University College of Medical Sciences, Pulau Pinang, Malaysia
| | - Wong Weng Kin
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine, 11800 Universiti Sains Malaysia, Penang, Malaysia
| | - Siti Shafiqah Anaqi Azham
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lee Zhi Jie
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Guee Cher Ching
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Foo Phiaw Chong
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Pim Chau Dam
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|