1
|
CHEN N, CAI Q, WANG S, SONG Q, XIE Y, SHI H, LI H, ZHAO X, ZHAO N, ZHANG X. Evaluation of the efficicacy of myrcene in the treatment of Eimeria tenella and Toxoplasma gondii infection. J Vet Med Sci 2025; 87:32-42. [PMID: 39567006 PMCID: PMC11735216 DOI: 10.1292/jvms.24-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Protozoan parasites such as Eimeria tenella and Toxoplasma gondii pose significant health challenges in livestock and humans. The limited treatment options and rising drug resistance underscore the urgent need for new therapies. This study investigates myrcene, a monoterpene hydrocarbon classified for its antiprotozoal potential against E. tenella and T. gondii infections. Initially, we examined its effect on the sporulation process of E. tenella oocysts in vitro and its anti-E. tenella activity in vivo. Myrcene significantly reduced the sporulation rate of E. tenella oocysts at 3 and 4 mg/kg. In vivo experiments demonstrated that treatment with 4 mg/kg myrcene significantly reduced E. tenella load and oocyst output, as well as cecal lesion and weight loss caused by E. tenella infection, showing moderate anti-E. tenella activity, with an Anticoccidial Index (ACI) of 161.4. Furthermore, we investigated the anti-T. gondii activity of myrcene both in vitro and in vivo. In vitro studies showed that treatment with myrcene effectively inhibited the invasion rate and intracellular proliferation ability of T. gondii tachyzoite in DF-1 cells in a dose-dependent manner. In vivo administration prolonged the survival time in T. gondii-infected mice, suggesting notable protective effects. Additionally, it mitigated T. gondii-induced hepatosplenic toxicity by reducing parasite load in the liver and spleen, and ameliorating liver function as evidenced by decreased serum transaminase levels. In conclusion, the findings demonstrate promising anti-E. tenella and anti-T. gondii activity exhibited by myrcene warranting further exploration into its mechanisms and potential therapeutic applications.
Collapse
Affiliation(s)
- Nianyuan CHEN
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Qingxiu CAI
- The National Animal Health Products for Engineering Technology Research Center, Qingdao, China
| | - Shujing WANG
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Qingyang SONG
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Ying XIE
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Huijuan SHI
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Hongmei LI
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| | - Xiaomin ZHAO
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| | - Ningning ZHAO
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| | - Xiao ZHANG
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
2
|
Shang FF, Wang MY, Ai JP, Shen QK, Guo HY, Jin CM, Chen FE, Quan ZS, Jin L, Zhang C. Synthesis and evaluation of mycophenolic acid derivatives as potential anti-Toxoplasma gondii agents. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02803-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Khamesipour F, Razavi SM, Hejazi SH, Ghanadian SM. In vitro and in vivo Anti-Toxoplasma activity of Dracocephalum kotschyi essential oil. Food Sci Nutr 2021; 9:522-531. [PMID: 33473313 PMCID: PMC7802582 DOI: 10.1002/fsn3.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023] Open
Abstract
Toxoplasma gondii is a zoonotic parasite of worldwide importance, responsible for toxoplasmosis in homeotherms. Although treatment options are readily available, most drugs often cause serious side effects. Extracts of Dracocephalum kotschyi (D. kotschyi) have shown significant pharmacological activity against various parasites, viruses, and bacteria. In this study, we evaluated the anti-T. gondii activity in vitro and in vivo of D. kotschyi essential oil. The thiazolyl blue tetrazolium bromide (MTT) method was used to assess the anti-T. gondii activity and cytotoxicity of the essential oil. The presence of T. gondii was observed by Giemsa staining, and the viability was evaluated by the trypan blue staining method. Furthermore, the survival rate of acutely infected mice was evaluated by intraperitoneal injecting of the essential oil (50, 100, and 200 mg kg-1 day-1) for five days after infection with 2 × 104 tachyzoites. Essential oil, negative, and positive controls that showed the best toxoplasmacidal activity were assayed in triplicate at each concentration. The essential oil exhibited the highest anti-Toxoplasma activity with a half-maximal inhibitory concentration (IC50) of 9.94 ± 0.38 µg, with a selectivity index of 2.463. On Vero cells, the CC50 of the oil was 24.49 ± 0.96 µg and exhibited a significant anti-Toxoplasma activity. Moreover, the treatment by essential oil significantly increased the survival rate compared to untreated infected control. In conclusion, the essential oil might be a useful compound, and with more testing, it may be an excellent alternative to standard chemical drugs in the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Faham Khamesipour
- Department of PathobiologySchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Seyed Mostafa Razavi
- Department of PathobiologySchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Seyed Hossein Hejazi
- Department of Parasitology and MycologySkin Diseases and Leishmaniasis Research CenterSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Seyed Mustafa Ghanadian
- Department of PharmacognosyIsfahan Pharmaceutical Sciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
4
|
Novakov IA, Sheikin DS, Chapurkin VV, Navrotskii MB, Babushkin AS, Ruchko EA, Maryshev AY, Schols D. Some Features of the Tscherniac‒Einhorn Reaction with
2-Thiouracil Derivatives. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220030056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Luan T, Jin C, Jin CM, Gong GH, Quan ZS. Synthesis and biological evaluation of ursolic acid derivatives bearing triazole moieties as potential anti-Toxoplasma gondii agents. J Enzyme Inhib Med Chem 2019; 34:761-772. [PMID: 30836795 PMCID: PMC6407578 DOI: 10.1080/14756366.2019.1584622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Ursolic acid (UA), a plant-derived compound, has many properties beneficial to health. In the present study, we synthesised three series of novel UA derivatives and evaluated their anti-Toxoplasma gondii activity both in vitro and in vivo. Most derivatives exhibited an improved anti-T. gondii activity in vitro when compared with UA (parent compound), whereas compound 3d exhibited the most potent anti-T. gondii activity in vivo. Spiramycin served as the positive control. Additionally, determination of biochemical parameters, including the liver and spleen indexes, indicated compound 3d to effectively reduce hepatotoxicity and significantly enhance anti-oxidative effects, as compared with UA. Furthermore, our molecular docking study indicated compound 3d to possess a strong binding affinity for T. gondii calcium-dependent protein kinase 1 (TgCDPK1). Based on these findings, we conclude that compound 3d, a derivative of UA, could act as a potential inhibitor of TgCDPK1.
Collapse
Affiliation(s)
- Tian Luan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chunmei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chun-Mei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Guo-Hua Gong
- First Clinical Medical College of Inner Mongolia University for Nationalities, Tongliao, China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia University for Nationalities, Tongliao, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
6
|
Khudina OG, Ivanova AE, Burgart YV, Pervova MG, Shatunova TV, Borisevich SS, Khursan SL, Saloutin VI. Alkylation of 6-Polyfluoroalkyl-2-thiouracils with Haloalkanes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019060071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Guo HY, Jin C, Zhang HM, Jin CM, Shen QK, Quan ZS. Synthesis and Biological Evaluation of (+)-Usnic Acid Derivatives as Potential Anti- Toxoplasma gondii Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9630-9642. [PMID: 31365255 DOI: 10.1021/acs.jafc.9b02173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Six series of (+)-usnic acid derivatives were synthesized. The IC50 values of these compounds were determined in T. gondii infected HeLa cells (μM) and in HeLa cells (μM), and their selectivity indexes (SI) were calculated. In vitro, most of the derivatives tested in this study exhibited more anti activity than that of the parent compound (+)-usnic acid and the positive control drugs. Among these derivatives, methyl (E)-(1-(6-acetyl-7,9-dihydroxy-8,9b-dimethyl-1,3-dioxo-3,9b-dihydrodibenzo[b,d]furan-2(1H)-ylidene)ethyl)phenylalaninate (D3) showed the most effective anti-T. gondii activity (selectivity >2.77). In comparison with the clinically used positive control drugs sulfadiazine (selectivity 1.15), pyrimethamine (selectivity 0.89), spiramycin (selectivity 0.72), and the lead compound (+)-usnic acid (selectivity 0.96), D3 showed better results in vitro. Furthermore, D3 and (E)-6-acetyl-7,9-dihydroxy-8,9b-dimethyl-2-(1-(quinolin-6-ylamino)ethylidene)dibenzo[b,d]furan-1,3(2H,9bH)-dione (F3) had greater inhibitory effects on T. gondii (inhibition rates 76.0% and 64.6%) in vivo in comparison to spiramycin (inhibition rate 55.2%); in the peritoneal cavity of mice, the number of tachyzoites was significantly reduced (p < 0.001) in vivo. Additionally, some biochemical parameters were measured and spleen indexes were comprehensively evaluated, and the results indicated that mice treated with both compound D3 and compound F3 showed reduced hepatotoxicity and significantly enhanced antioxidative effects in comparison to the normal group. Granuloma and cyst formation were effected by the inhibition of compound D3 and compound F3 in liver sections. Overall, these results indicated that D3 and F3 for use as anti-T. gondii agents are promising lead compounds.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - ChunMei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Hai-Ming Zhang
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Chun-Mei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Qing-Kun Shen
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| |
Collapse
|
8
|
6-Trifluoromethyl-2-thiouracil and its analogs in reactions with 4-bromobutyl acetate and 2-bromoacetophenone. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Effects of Aloe vera and Eucalyptus methanolic extracts on experimental toxoplasmosis in vitro and in vivo. Exp Parasitol 2018; 192:6-11. [PMID: 30031121 DOI: 10.1016/j.exppara.2018.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/31/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
Abstract
Toxoplasmosis is a worldwide disease caused by the protozoan parasite Toxoplasma gondii (T. gondii), which is most commonly treated by pyrimethamine and sulfadiazine. However, this treatment presents several adverse side effects; Thus, new drugs with lower toxicities are urgently needed. In this study the anti-T. gondii activity of A. vera and Eucalyptus extracts were evaluated in vitro using a MTT (3-(4, 5-dimethylthiazol-2-yl) 2, 5-diphenyltetrazolium bromide) assay and in vivo by measuring the survival rates of mice infected with 2 × 103 tachyzoites of RH strain of T. gondii and then injected intraperitoneally by different concentrations of extracts for 4 days. Biochemical parameters such as Ferric Reducing Antioxidant Potential (FRAP) and malondialdehyde (MDA) assay were also evaluated. As results, in the in vitro assay, the IC50 values were 13.2, 24.7, 2.63 μg/ml, and the selectivity indexes were 3.3, 2.4, 3.03 for the A. vera, Eucalyptus and pyrimethamine, respectively. The mice treated with Eucalyptus showed a better survival rate than others (P < 0.05). The increased weight of liver and spleen, due to infection, was reduced by treatments. In FRAP assay Eucalyptus showed a better antioxidant activity than the other extracts. MDA levels in both liver and spleen were reduced by treatment. The results show that A. Vera and Eucalyptus possess anti-T. gondii activities in vitro and in vivo, in addition, Eucalyptus shows antioxidant activity with a higher survival rate. Therefore, Eucalyptus may be a useful candidate for treating Toxoplasma infection. Moreover, further studies are required to investigate the fractionations of this plant against T. gondii.
Collapse
|
10
|
Zhou CX, Cong W, Chen XQ, He SY, Elsheikha HM, Zhu XQ. Serum Metabolic Profiling of Oocyst-Induced Toxoplasma gondii Acute and Chronic Infections in Mice Using Mass-Spectrometry. Front Microbiol 2018; 8:2612. [PMID: 29354104 PMCID: PMC5761440 DOI: 10.3389/fmicb.2017.02612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite causing severe diseases in immunocompromised individuals and congenitally infected neonates, such as encephalitis and chorioretinitis. This study aimed to determine whether serum metabolic profiling can (i) identify metabolites associated with oocyst-induced T. gondii infection and (ii) detect systemic metabolic differences between T. gondii-infected mice and controls. We performed the first global metabolomics analysis of mice serum challenged with 100 sporulated T. gondii Pru oocysts (Genotype II). Sera from acutely infected mice (11 days post-infection, dpi), chronically infected mice (33 dpi) and control mice were collected and analyzed using LC-MS/MS platform. Following False Discovery Rate filtering, we identified 3871 and 2825 ions in ESI+ or ESI- mode, respectively. Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) identified metabolomic profiles that clearly differentiated T. gondii-infected and -uninfected serum samples. Acute infection significantly influenced the serum metabolome. Our results identified common and uniquely perturbed metabolites and pathways. Acutely infected mice showed perturbations in metabolites associated with glycerophospholipid metabolism, biosynthesis of amino acid, and tyrosine metabolism. These findings demonstrated that acute T. gondii infection induces a global perturbation of mice serum metabolome, providing new insights into the mechanisms underlying systemic metabolic changes during early stage of T. gondii infection.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Wei Cong
- Department of Prevention and Treatment of Animal Diseases, College of Marine Science, Shandong University (Weihai), Weihai, China
| | - Xiao-Qing Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Microbiology and Immunology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shen-Yi He
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
11
|
Abugri DA, Witola WH, Russell AE, Troy RM. In vitro activity of the interaction between taxifolin (dihydroquercetin) and pyrimethamine against Toxoplasma gondii. Chem Biol Drug Des 2017; 91:194-201. [PMID: 28696589 DOI: 10.1111/cbdd.13070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/19/2017] [Accepted: 07/02/2017] [Indexed: 11/26/2022]
Abstract
Toxoplasmosis is one of the most neglected zoonotic foodborne parasitic diseases that cause public health and socioeconomic concern worldwide. The current drugs used for the treatment of toxoplasmosis have been identified to have clinical limitations. Hence, new drugs are urgently needed to eradicate T.gondii infections globally. Here, an in vitro anti-Toxoplasma gondii activity of taxifolin (dihydroquercetin) and dihydrofolate inhibitor (pyrimethamine) alone and in combination with a fixed concentration of pyrimethamine were investigated against the rapidly proliferating T.gondii RH strain at 48 hr using colorimetric assay. Pyrimethamine showed the highest anti-T. gondii activity with IC50P of 0.84 μg/ml (p > .05), respectively. The combination of pyrimethamine with dihydroquercetin gave a significant inhibitory activity against tachyzoites in in vitro with IC50p of 1.39 μg/ml (p < .05). The IC50p ranges obtained for the individual and the combination of taxifolin with pyrimethamine inhibition of parasite growth were not cytotoxic to the infected HFF and Hek-293 cell lines used. These compounds combination should be investigated further using in vivo model of toxoplasmosis.
Collapse
Affiliation(s)
- Daniel A Abugri
- Department of Chemistry, Tuskegee University, Tuskegee, AL, USA.,Department of Biology, Tuskegee University, Tuskegee, AL, USA.,Laboratory of Ethnomedicine, Parasitology and Drug Discovery, Tuskegee University, Tuskegee, AL, USA
| | - William H Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana Champaign, IL, USA
| | | | - Roberta M Troy
- Department of Biology, Tuskegee University, Tuskegee, AL, USA
| |
Collapse
|
12
|
Alcolea Palafox M, Rastogi V, Singh S. Effect of the sulphur atom on geometry and spectra of the biomolecule 2-thiouracil and in the WC base pair 2-thiouridine-adenosine. Influence of water in the first hydration shell. J Biomol Struct Dyn 2017; 36:1225-1254. [DOI: 10.1080/07391102.2017.1318304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Alcolea Palafox
- Facultad de Ciencias Químicas, Departamento de Química-Fisica1, Universidad Complutense, Madrid 28040, Spain
| | - V.K. Rastogi
- R.D. Foundation Group of Institutions, NH-58, Kadrabad, Modinagar, Ghaziabad, India
- Indian Spectroscopy Society, KC 68/1, Old Kavinagar, Ghaziabad 201 002, India
| | - S.P. Singh
- Department of Physics, Dr B R Ambedkar Govt Degree College, Mainpuri, India
| |
Collapse
|
13
|
Montazeri M, Sharif M, Sarvi S, Mehrzadi S, Ahmadpour E, Daryani A. A Systematic Review of In vitro and In vivo Activities of Anti -Toxoplasma Drugs and Compounds (2006-2016). Front Microbiol 2017; 8:25. [PMID: 28163699 PMCID: PMC5247447 DOI: 10.3389/fmicb.2017.00025] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022] Open
Abstract
The currently available anti-Toxoplasma agents have serious limitations. This systematic review was performed to evaluate drugs and new compounds used for the treatment of toxoplasmosis. Data was systematically collected from published papers on the efficacy of drugs/compounds used against Toxoplasma gondii (T. gondii) globally during 2006-2016. The searched databases were PubMed, Google Scholar, Science Direct, ISI Web of Science, EBSCO, and Scopus. One hundred and eighteen papers were eligible for inclusion in this systematic review, which were both in vitro and in vivo studies. Within this review, 80 clinically available drugs and a large number of new compounds with more than 39 mechanisms of action were evaluated. Interestingly, many of the drugs/compounds evaluated against T. gondii act on the apicoplast. Therefore, the apicoplast represents as a potential drug target for new chemotherapy. Based on the current findings, 49 drugs/compounds demonstrated in vitro half-maximal inhibitory concentration (IC50) values of below 1 μM, but most of them were not evaluated further for in vivo effectiveness. However, the derivatives of the ciprofloxacin, endochin-like quinolones and 1-[4-(4-nitrophenoxy) phenyl] propane-1-one (NPPP) were significantly active against T. gondii tachyzoites both in vitro and in vivo. Thus, these compounds are promising candidates for future studies. Also, compound 32 (T. gondii calcium-dependent protein kinase 1 inhibitor), endochin-like quinolones, miltefosine, rolipram abolish, and guanabenz can be repurposed into an effective anti-parasitic with a unique ability to reduce brain tissue cysts (88.7, 88, 78, 74, and 69%, respectively). Additionally, no promising drugs are available for congenital toxoplasmosis. In conclusion, as current chemotherapy against toxoplasmosis is still not satisfactory, development of well-tolerated and safe specific immunoprophylaxis in relaxing the need of dependence on chemotherapeutics is a highly valuable goal for global disease control. However, with the increasing number of high-risk individuals, and absence of a proper vaccine, continued efforts are necessary for the development of novel treatment options against T. gondii. Some of the novel compounds reviewed here may represent good starting points for the discovery of effective new drugs. In further, bioinformatic and in silico studies are needed in order to identify new potential toxoplasmicidal drugs.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Student Research Committee, Mazandaran University of Medical SciencesSari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences TehranIran
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Tabriz University of Medical SciencesTabriz, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| |
Collapse
|
14
|
Review of Experimental Compounds Demonstrating Anti-Toxoplasma Activity. Antimicrob Agents Chemother 2016; 60:7017-7034. [PMID: 27600037 DOI: 10.1128/aac.01176-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous apicomplexan parasite capable of infecting humans and other animals. Current treatment options for T. gondii infection are limited and most have drawbacks, including high toxicity and low tolerability. Additionally, no FDA-approved treatments are available for pregnant women, a high-risk population due to transplacental infection. Therefore, the development of novel treatment options is needed. To aid this effort, this review highlights experimental compounds that, at a minimum, demonstrate inhibition of in vitro growth of T. gondii When available, host cell toxicity and in vivo data are also discussed. The purpose of this review is to facilitate additional development of anti-Toxoplasma compounds and potentially to extend our knowledge of the parasite.
Collapse
|
15
|
Human toxoplasmosis–Searching for novel chemotherapeutics. Biomed Pharmacother 2016; 82:677-84. [DOI: 10.1016/j.biopha.2016.05.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/22/2023] Open
|
16
|
Yeo SJ, Jin C, Kim S, Park H. In Vitro and in Vivo Effects of Nitrofurantoin on Experimental Toxoplasmosis. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:155-61. [PMID: 27180573 PMCID: PMC4870977 DOI: 10.3347/kjp.2016.54.2.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 01/18/2023]
Abstract
Toxoplasma gondii is an important opportunistic pathogen that causes toxoplasmosis, which has very few therapeutic treatment options. The most effective therapy is a combination of pyrimethamine and sulfadiazine; however, their utility is limited because of drug toxicity and serious side effects. For these reasons, new drugs with lower toxicity are urgently needed. In this study, the compound, (Z)-1-[(5-nitrofuran-2-yl)methyleneamino]-imidazolidine-2,4-dione (nitrofurantoin), showed anti-T. gondii effects in vitro and in vivo. In HeLa cells, the selectivity of nitrofurantoin was 2.3, which was greater than that of pyrimethamine (0.9). In T. gondii-infected female ICR mice, the inhibition rate of T. gondii growth in the peritoneal cavity was 44.7% compared to the negative control group after 4-day treatment with 100 mg/kg of nitrofurantoin. In addition, hematology indicators showed that T. gondii infection-induced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, biochemical parameters involved in liver injury, were reduced by nitrofurantoin significantly. Moreover, nitrofurantoin exerted significant effects on the index of antioxidant status, i.e., malondialdehyde (MDA) and glutathione (GSH). The nitrofurantoin-treated group inhibited the T. gondii-induced MDA levels while alleviating the decrease in GSH levels. Thus, nitrofurantoin is a potential anti-T. gondii candidate for clinical application.
Collapse
Affiliation(s)
- Seon-Ju Yeo
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea
| | - ChunMei Jin
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - SungYeon Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea
| |
Collapse
|
17
|
Antiparasitic effects of oxymatrine and matrine against Toxoplasma gondii in vitro and in vivo. Exp Parasitol 2016; 165:95-102. [PMID: 26993085 DOI: 10.1016/j.exppara.2016.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/07/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii (T. gondii) is an important pathogen which can causes serious public health problems. Since the current therapeutic drugs for toxoplasmosis present serious host toxicity, research on effective and new substances of relatively low toxicity is urgently needed. This study was carried out to evaluate the anti-parasitic effect of oxymatrine (OM) and matrine (ME) against T. gondii in vitro and in vivo. In our study, the anti-T. gondii activities of ME and OM were evaluated in vitro using cell counting kit-8 assay, morphological observation and trypan blue exclusion assay. In vivo, mice were sacrificed four days post-infection and ascites were drawn out to determine the extent of tachyzoite proliferation. Viscera indexes and liver biochemical parameters, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutathione (GSH) and malondialdehyde (MDA), were examined to evaluate the toxicity of compounds to mice. As a result, OM and ME showed anti-T. gondii activity but low selectivity toxicity to HeLa cells. Both compounds also significantly decreased the number of tachyzoites in peritoneal cavity and recovered the levels of ALT, AST, GSH and MDA in liver. Moreover, the mice treated with OM or ME achieved better results in viscera index and survival rate than that of spiramycin. These results suggest that OM and ME are likely the sources of new drugs for toxoplasmosis, and further studies will be necessary to compare the efficacy of drug combination, as well as identify its action of mechanism.
Collapse
|