1
|
Shamshirgaran MA, Golchin M. A comprehensive review of experimental models and induction protocols for avian necrotic enteritis over the past 2 decades. Front Vet Sci 2024; 11:1429637. [PMID: 39113718 PMCID: PMC11304537 DOI: 10.3389/fvets.2024.1429637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
Necrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to the poultry industry. It leads to progressive damage to the small intestine, reduced performance, increased mortality rates, and substantial economic losses. With the removal of antimicrobial agents from chicken feed, there is an urgent need to find alternative approaches for NE control. Various approaches, including vaccination, prebiotics, probiotics, and plant-derived products, have been utilized to address NE in poultry management. To evaluate the efficacy of these preventive measures against NE, successful induction of NE is crucial to observe effects of these approaches in related studies. This study presents a comprehensive overview of the methods and approaches utilized for NE reproduction in related studies from 2004 to 2023. These considerations are the careful selection of a virulent Clostridium perfringens strain, preparation of challenge inoculum, choice of time and the route for challenge inoculum administration, and utilization of one or more predisposing factors to increase the rate of NE occurrence in birds under experiment. We also reviewed the different systems used for lesion scoring of NE-challenged birds. By gaining clarity on these fundamental parameters, researchers can make informed decisions regarding the selection of the most appropriate NE experimental design in their respective studies.
Collapse
|
2
|
Moore RJ. Necrotic enteritis and antibiotic-free production of broiler chickens: Challenges in testing and using alternative products. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:288-298. [PMID: 38371475 PMCID: PMC10869589 DOI: 10.1016/j.aninu.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 02/20/2024]
Abstract
The global trend towards raising broiler chickens without the use of in-feed antibiotics (IFAs) means that there is an ongoing need to develop alternative treatments capable of delivering the benefits that IFAs previously provided. IFAs supported the productivity performance of chickens and played a key role in maintaining their health. Necrotic enteritis (NE) is an important disease of broilers that affects health, productivity, and welfare, and was previously well controlled by IFAs. However, with the reduction in IFA use, NE is resurgent in some countries. Vaccines and various feed additives, including pre-, pro-, and postbiotics, phytobiotics, fatty acids, and phage therapies have been introduced as alternative methods of NE control. While some of these feed additives have specific activity against the NE pathogen, Clostridium perfringens, most have the more general goal of reinforcing gut health. Extensive reviews of the effects of many of these feed additives on gut health have been published recently. Hence, rather than cover previously well reviewed areas of research this review focuses on the challenges and pitfalls in undertaking experimental assessment of alternative NE treatments and translating laboratory research to real world commercial production settings. The review is based on the author's particular experience, reading, thoughts, and analysis of the available information and inevitably presents a particular understanding that is likely to be at odds with others thinking on these issues. It is put forward to stimulate thinking and discussion on the issues covered.
Collapse
Affiliation(s)
- Robert J. Moore
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
3
|
Hernández-Valdivia E, Islas-Ojeda E, Casillas-Peñuelas R, Valdivia-Flores A, García-Munguía A. Gastrointestinal parasites in bullfrogs (Lithobates catesbeianus) in aquaculture production units in the Mexican central highlands. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e001523. [PMID: 37403883 DOI: 10.1590/s1984-29612023038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023]
Abstract
In Mexico, intensive production of bullfrogs is one of the most important aquaculture activities, due to growing demand for their meat. Frogs can be hosts for several parasites that negatively affect their development and health. The objective of this study was to identify the presence of intestinal parasites in bullfrogs in aquaculture production units. Eighteen bullfrogs aquaculture production units were selected, and 20 animals (n=360) from each farm. Fecal samples were obtained by mucosal scraping and processed using the concentration method. The overall prevalence of intestinal parasites was 70.5%, and all farms had frogs infected by some species of parasite. Two species of parasites were identified: Eimeria sp. and Strongyloides sp. Significant differences were found regarding parasite prevalence between males and females (73.8% vs 58.8%) and regarding tibia length (5.5 vs 6.1 cm) and weight (168 vs 187 g) between parasitized and non-parasitized frogs. In conclusion, the present study showed a high prevalence of intestinal parasites, and morphometric alterations (weight, snout-cloaca length, radio-ulna length, tibia length and distance between parotid glands) were identified in the parasitized animals. These results provided useful information that will enable establishment of adequate control measures to help minimize the adverse effects of these parasites.
Collapse
Affiliation(s)
| | - Efraín Islas-Ojeda
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Aguascalientes - UAA, Aguascalientes, Mexico
| | - Rafael Casillas-Peñuelas
- Departmento de Ciencias de los Alimentos, Universidad Autónoma de Aguascalientes - UAA, Aguascalientes, Mexico
| | - Arturo Valdivia-Flores
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Aguascalientes - UAA, Aguascalientes, Mexico
| | - Alberto García-Munguía
- Departmento de Ciencias Agronómicas, Universidad Autónoma de Aguascalientes - UAA, Aguascalientes, Mexico
| |
Collapse
|
4
|
Jenkins MC, O'Brien C, Parker C, Thompson P, Fitzcoy S, Bautista D. Polymerase Chain Reaction Directed to Eimeria ITS1 rDNA or a Single-Copy Orthologue Corroborates Standard Micro-oocyst Analysis of Intestinal Tissue from Chickens Infected with E. acervulina, E. maxima, or E. tenella. Avian Dis 2022; 66:181-185. [PMID: 35838748 DOI: 10.1637/aviandiseases-d-22-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
The purpose of this study was to compare micro-oocyst counts of Eimeria to PCR analysis of intestinal DNA from smears of duodenum, jejunum/ileum, and cecum of chickens infected with Eimeria acervulina, Eimeria maxima, or Eimeria tenella oocysts. Broiler chicks were infected in triplicate with various doses of E. acervulina, E. maxima, or E. tenella oocysts and were necropsied 5-6 days later to recover duodenal, jejunal, or cecal tissue for micro-oocyst count and for DNA recovery. Micro-oocyst counts were done independently by three individuals. Micro-oocyst counts and PCR directed to ITS1 rDNA or to a single-copy orthologue (SCO 5995) displayed a linear relationship with oocyst dose for each Eimeria species. A strong correlation was found between mean micro-oocyst counts and both PCR assays for E. acervulina (r = 0.78-0.94), E. maxima (r = 0.79-0.91), and E. tenella (r = 0.85-0.96). There was good agreement between ITS1 and SCO 5995 PCR assays: E. acervulina (r = 0.92), E. maxima (r = 0.79), and E. tenella (r = 0.93). However, only ITS1 PCR analysis corroborated micro-oocyst counts of Eimeria oocyst DNA recovered from Eimeria-infected broiler chickens submitted to a poultry diagnostic laboratory. These findings suggest that ITS1 PCR or SCO PCR can validate traditional micro-oocyst counts used in quantifying Eimeria infection in chickens. Additional studies may provide a method for estimating the relative abundance of each Eimeria species in a natural infection.
Collapse
Affiliation(s)
- Mark C Jenkins
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705,
| | - Celia O'Brien
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - Carolyn Parker
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - Peter Thompson
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705
| | | | | |
Collapse
|
5
|
Anticoccidial Vaccination Is Associated with Improved Intestinal Health in Organic Chickens. Vet Sci 2022; 9:vetsci9070347. [PMID: 35878364 PMCID: PMC9321215 DOI: 10.3390/vetsci9070347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary In recent years, the number of organic chicken farms has increased. Chickens can be infected by single-cell parasites, coccidia, which cause lesions in the lining of the intestine leading to poor growth and sometimes death (coccidiosis). This infection can also lead to overgrowth in the intestine of a bacterium, Clostridium perfringens, that may cause further damage (necrotic enteritis). Prevention is often achieved by adding substances in the feed that will slow down the development of parasites and bacteria, but this is not allowed in organic farming. The aim of this study was to investigate if vaccination against coccidia can prevent these diseases in organic chickens. Vaccinated chickens developed milder gut lesions, had fewer and less damaging C. perfringens, and had similar or higher body weight compared to unvaccinated chickens six weeks after vaccination. No deaths from coccidiosis or necrotic enteritis occurred among vaccinated chickens while some unvaccinated chickens died from these diseases. We conclude that vaccination against coccidia benefits organic chickens. This study provides knowledge supporting further development of the organic chicken industry. The results are also of relevance to the management of coccidiosis and necrotic enteritis in conventional broilers. Abstract Eimeria spp. and Clostridium perfringens (CP) are pathogens associated with coccidiosis and necrotic enteritis (NE) in broiler chickens. In this study we evaluated the effect of anticoccidial vaccination on intestinal health in clinically healthy organic Ross 308 chickens. On each of two farms, one unvaccinated flock (A1 and B1) was compared to one vaccinated flock (A2 and B2) until ten weeks of age (WOA). Faecal oocysts were counted weekly, and species were identified by PCR (ITS-1 gene). Lesion scoring, CP quantification and PCR targeting the CP NetB toxin gene were performed at three, four, and six WOA and chickens were weighed. Necropsies were performed on randomly selected chickens to identify coccidiosis/NE. Oocyst shedding peaked at three WOA in all flocks. Later oocyst shedding (E. tenella/E. maxima) in unvaccinated flocks at 5–7 WOA coincided with coccidiosis/NE. Although results differed somewhat between farms, vaccination was associated with lower intestinal lesion scores, reduced caecal CP counts, lower proportions of netB-positive CP, lower body weight at three–four WOA, and similar or slightly increased body weight at six WOA. In conclusion, the intestinal health of organic broilers can benefit from anticoccidial vaccination when oocyst exposure levels are high.
Collapse
|
6
|
Necrotic enteritis in chickens: a review of pathogenesis, immune responses and prevention, focusing on probiotics and vaccination. Anim Health Res Rev 2022; 22:147-162. [DOI: 10.1017/s146625232100013x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractNecrotic enteritis (NE), caused by Clostridium perfringens (CP), is one of the most common of poultry diseases, causing huge economic losses to the poultry industry. This review provides an overview of the pathogenesis of NE in chickens and of the interaction of CP with the host immune system. The roles of management, nutrition, probiotics, and vaccination in reducing the incidence and severity of NE in poultry flocks are also discussed.
Collapse
|
7
|
Fancher CA, Zhang L, Kiess AS, Adhikari PA, Dinh TT, Sukumaran AT. Avian Pathogenic Escherichia coli and Clostridium perfringens: Challenges in No Antibiotics Ever Broiler Production and Potential Solutions. Microorganisms 2020; 8:E1533. [PMID: 33036173 PMCID: PMC7599686 DOI: 10.3390/microorganisms8101533] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
United States is the largest producer and the second largest exporter of broiler meat in the world. In the US, broiler production is largely converting to antibiotic-free programs which has caused an increase in morbidity and mortality within broiler farms. Escherichia coli and Clostridium perfringens are two important pathogenic bacteria readily found in the broiler environment and result in annual billion-dollar losses from colibacillosis, gangrenous dermatitis, and necrotic enteritis. The broiler industry is in search of non-antibiotic alternatives including novel vaccines, prebiotics, probiotics, and housing management strategies to mitigate production losses due to these diseases. This review provides an overview of the broiler industry and antibiotic free production, current challenges, and emerging research on antibiotic alternatives to reduce pathogenic microbial presence and improve bird health.
Collapse
Affiliation(s)
- Courtney A. Fancher
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Aaron S. Kiess
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Pratima A. Adhikari
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Thu T.N. Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA;
| | - Anuraj T. Sukumaran
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| |
Collapse
|
8
|
Mutual interactions of the apicomplexan parasites Toxoplasma gondii and Eimeria tenella with cultured poultry macrophages. Parasit Vectors 2018; 11:453. [PMID: 30081942 PMCID: PMC6080511 DOI: 10.1186/s13071-018-3040-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/27/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Toxoplasma gondii and Eimeria tenella are two common parasites in poultry. Mixed infections are likely to occur frequently in chickens due to the high prevalence of both pathogens. In this study, we investigate the co-occurrence of the two pathogens in the same immunocompetent host cell population towards potential parasite-parasite as well as altered patterns of parasite-host interactions. METHODS Primary macrophages from chicken blood were co-infected in vitro with T. gondii tachyzoites (RH strain) and E. tenella sporozoites (Houghton strain) for 72 h. Morphological observations by light microscopy and assessments of parasite replication by quantitative real-time PCR (qPCR) were performed at 24, 48 and 72 h post-infection (hpi). Six host cell immune factors previously linked to T. gondii or E. tenella infection were selected for gene expression analysis in this study. RESULTS Distinct morphological changes of macrophages were observed during mixed infection at 24 hpi and immunological activation of host cells was obvious. Macrophage mRNA expression for iNOS at 48 hpi and for TNF-α at 72 hpi were significantly elevated after mixed infection. Distinct upregulation of IL-10 was also present during co-infection compared to Eimeria mono-infection at 48 and 72 hpi. At 72 hpi, the total number of macrophages as well as the number of both parasites decreased markedly. As measured by qPCR, E. tenella population tended to increase during T. gondii co-infection, while T. gondii replication was not distinctly altered. CONCLUSIONS Mutual interactions of T. gondii and E. tenella were observed in the selected co-infection model. The interactions are supposed to be indirect considering the observed changes in host cell metabolism. This study would thus help understanding the course of co-infection in chickens that may be relevant in terms of veterinary and zoonotic considerations.
Collapse
|
9
|
Hiob L, Koethe M, Schares G, Goroll T, Daugschies A, Bangoura B. Experimental Toxoplasma gondii and Eimeria tenella co-infection in chickens. Parasitol Res 2017; 116:3189-3203. [PMID: 28983740 DOI: 10.1007/s00436-017-5636-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
The widespread apicomplexan parasites Toxoplasma gondii (T. gondii) and Eimeria tenella (E. tenella) are important pathogens with high prevalence in poultry. The aim of our study was the investigation of mutual influences in co-infected chickens, focusing on immune response and course of infection. Two separate trials were performed using in total 96 1-day-old chickens, divided into four study groups: group NC (negative control, uninfected), group PC-T (oral or intramuscular infection with T. gondii oocysts (trial 1) or tachyzoites (trial 2), respectively), group PC-E (oral infection with E. tenella (trial 1) or E. tenella and Eimeria acervulina (trial 2)), and group TE (co-infection). T. gondii and Eimeria infections were validated by different parameters, and cytokine expression in the gut and spleen was investigated. T. gondii-specific antibodies were detected earliest 4 days post infection (p.i.) by immunoblot and direct DNA detection was possible in 22.1% of all tissue samples from infected chickens. Eimeria spp. merogony seemed to be enhanced by co-infection with T. gondii, interestingly without marked differences in oocyst excretion between co-infected and Eimeria spp. mono-infected chickens. An increase of messenger RNA (mRNA) expression of Th1- (IFN-γ, IL-12, TNF-α) and Th2-related cytokines (IL-10) mainly in groups PC-E and TE was observed, however, without statistically significant differences between co-infection and single infection with Eimeria. In conclusion, most of the measurable immune response could be attributed to Eimeria infection. To the best of our knowledge, this is the first report on co-infection experiments of T. gondii with Eimeria spp. in chickens.
Collapse
Affiliation(s)
- Lysanne Hiob
- Institute of Parasitology, Centre for Infectious Diseases, University Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany.
| | - M Koethe
- Institute of Food Hygiene, Centre for Veterinary Public Health, University Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - G Schares
- Federal Research Institute for Animal Health, Institute of Epidemiology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - T Goroll
- Institute of Parasitology, Centre for Infectious Diseases, University Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - A Daugschies
- Institute of Parasitology, Centre for Infectious Diseases, University Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - B Bangoura
- Institute of Parasitology, Centre for Infectious Diseases, University Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany
- Department of Veterinary Medicine, University of Wyoming, 1174 Snowy Range Road, Laramie, WY, 82070, USA
| |
Collapse
|
10
|
Gaucher ML, Quessy S, Letellier A, Arsenault J, Boulianne M. Impact of a drug-free program on broiler chicken growth performances, gut health, Clostridium perfringens and Campylobacter jejuni occurrences at the farm level. Poult Sci 2015; 94:1791-801. [PMID: 26047674 DOI: 10.3382/ps/pev142] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2015] [Indexed: 11/20/2022] Open
Abstract
The use of antimicrobial agents as feed additives in poultry production is a public health concern due to the overall increase in antimicrobial resistance. Although some alternative products are commercially available, little is known on their potential impact on flock health and productivity. A prospective study involving 1.55 million birds was conducted on eight commercial broiler farms in Québec, Canada, to evaluate the impact of replacing antibiotic growth promoters and anticoccidial drugs by a drug-free program including improved brooding conditions, anticoccidial vaccination, essential oil-based feed additives, and water acidification. Various productivity and health parameters were compared between barns allocated to the conventional and the drug-free program. Zootechnical performances were monitored as productivity criteria. Clinical necrotic enteritis and subclinical enteritis occurrences, litter and fecal moistures content were measured, and microscopic gut health was evaluated. Clostridium perfringens and Campylobacter spp. strains were recovered from fecal samples collected during farm visits. Clostridium perfringens counts were used as poultry health indicators and Campylobacter prevalence was noted as well. The drug-free program was associated with a significant increase in feed conversion ratio and a decrease in mean live weight at slaughter and in daily weight gain. An increased incidence of necrotic enteritis outbreaks and subclinical enteritis cases, as well as an increase in litter moisture content at the end of the rearing period were also observed for this program. Mean microscopic intestinal lesion scores and prevalence of Campylobacter colonization were not statistically different between the two groups but the drug-free program was associated with higher Clostridium perfringens isolation rates. According to the current study design, the results suggest that substitution of antibiotic growth promoters and anticoccidial drugs by a drug-free program impacts various broiler chicken production parameters and Clostridium perfringens carriage levels.
Collapse
Affiliation(s)
- M-L Gaucher
- Research Chair in Meat Safety, Pathology and Microbiology Department, Veterinary Faculty, University of Montreal, CP 5000, St-Hyacinthe, Québec, Canada J2S 7C6 Chair in Poultry Research, Clinical Sciences Department, Veterinary Faculty, University of Montreal, CP 5000, St-Hyacinthe, Québec, Canada J2S 7C6 Swine and Poultry Infectious Disease Research Centre (CRIPA), Pathology and Microbiology Department, Veterinary Faculty, University of Montreal, CP 5000, St-Hyacinthe, Québec, Canada J2S 7C6
| | - S Quessy
- Research Chair in Meat Safety, Pathology and Microbiology Department, Veterinary Faculty, University of Montreal, CP 5000, St-Hyacinthe, Québec, Canada J2S 7C6
| | - A Letellier
- Research Chair in Meat Safety, Pathology and Microbiology Department, Veterinary Faculty, University of Montreal, CP 5000, St-Hyacinthe, Québec, Canada J2S 7C6
| | - J Arsenault
- Swine and Poultry Infectious Disease Research Centre (CRIPA), Pathology and Microbiology Department, Veterinary Faculty, University of Montreal, CP 5000, St-Hyacinthe, Québec, Canada J2S 7C6
| | - M Boulianne
- Swine and Poultry Infectious Disease Research Centre (CRIPA), Pathology and Microbiology Department, Veterinary Faculty, University of Montreal, CP 5000, St-Hyacinthe, Québec, Canada J2S 7C6
| |
Collapse
|