1
|
Rivara-Espasandín M, Palumbo MC, Sosa EJ, Radío S, Turjanski AG, Sotelo-Silveira J, Fernandez Do Porto D, Smircich P. Omics data integration facilitates target selection for new antiparasitic drugs against TriTryp infections. Front Pharmacol 2023; 14:1136321. [PMID: 37089958 PMCID: PMC10115950 DOI: 10.3389/fphar.2023.1136321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction:Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., commonly referred to as TriTryps, are a group of protozoan parasites that cause important human diseases affecting millions of people belonging to the most vulnerable populations worldwide. Current treatments have limited efficiencies and can cause serious side effects, so there is an urgent need to develop new control strategies. Presently, the identification and prioritization of appropriate targets can be aided by integrative genomic and computational approaches.Methods: In this work, we conducted a genome-wide multidimensional data integration strategy to prioritize drug targets. We included genomic, transcriptomic, metabolic, and protein structural data sources, to delineate candidate proteins with relevant features for target selection in drug development.Results and Discussion: Our final ranked list includes proteins shared by TriTryps and covers a range of biological functions including essential proteins for parasite survival or growth, oxidative stress-related enzymes, virulence factors, and proteins that are exclusive to these parasites. Our strategy found previously described candidates, which validates our approach as well as new proteins that can be attractive targets to consider during the initial steps of drug discovery.
Collapse
Affiliation(s)
- Martin Rivara-Espasandín
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miranda Clara Palumbo
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel J. Sosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Santiago Radío
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrián G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Dario Fernandez Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| |
Collapse
|
2
|
Chiranjivi AK, Prakash J, Saha G, Chandra P, Dubey VK. Mutational studies on Leishmania donovani dihydrolipoamide dehydrogenase (LdBPK291950.1) indicates that the enzyme may not be classical class-I pyridine nucleotide-disulfide oxidoreductase. Int J Biol Macromol 2020; 164:2141-2150. [PMID: 32750477 DOI: 10.1016/j.ijbiomac.2020.07.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022]
Abstract
We report biochemical studies on two Cys residues mutation (Cys15Thr, Cys38Gly) nearest to the active site and three other amino acid substitution mutations expected to be the part of active site of LdDLDH_Variant1. Our biochemical studies show that the replacement of Cys15 increases the Km for dihydrolipoamide (DLD) substrate by five folds and NAD+ by three fold indicating that this mutation affects the binding of DLD and NAD+ significantly. Cys38 was also mutated to 'Gly' which resulted in nine fold greater Km for NAD+ without affecting Km for DLD. However, even after these mutations (Cys15Thr and Cys38Gly), reduced enzyme activity suggests that both the 'Cys' residues are not involved in disulfide bond formation but affect the binding of substrates. The data hints towards the possibility of a different catalytic mechanism from the classical class I - pyridine nucleotide-disulfide oxidoreductase. Remaining other mutated residues Ala48Ile, Asp49Gly, and Ala54Ile showed an increase in two to three-folds Km value for NAD+, which means these residues are important for the binding of NAD+ to the enzyme. However, Ala48Ile and Asp49Gly mutations showed a decrease of Km for DLD. Apart from the mutational studies, localization of LdDLDH_Variant2 of LdDLDH was also analyzed.
Collapse
Affiliation(s)
- Adarsh Kumar Chiranjivi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Jay Prakash
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India
| | - Gundappa Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India.
| |
Collapse
|
3
|
Synthesis of new N,S-acetal analogs derived from juglone with cytotoxic activity against Trypanossoma cruzi. J Bioenerg Biomembr 2020; 52:199-213. [PMID: 32418003 DOI: 10.1007/s10863-020-09834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
A series of 11 new N,S-acetal juglone derivatives were synthesized and evaluated against T. cruzi epimastigote forms. These compounds were obtained in good to moderate yields using a microwave irradiation protocol. Among all compounds, two N,S-acetal analogs, showed significant trypanocidal activity. Notably, one compound 11g exhibited selectivity index 10-fold higher than the reference drug benznidazole for epimastigote. The compound 11h was more effective for amastigote forms. Both prototypes exhibited S.I. higher than the benznidazole description. Thus, both compounds proving to be useful candidate molecules to further studies in infected animals.
Collapse
|
4
|
Could angiotensin-modulating drugs be relevant for the treatment of Trypanosoma cruzi infection? A systematic review of preclinical and clinical evidence. Parasitology 2019; 146:914-927. [PMID: 30782223 DOI: 10.1017/s003118201900009x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractAlthough leucocytes are targets of renin-angiotensin system (RAS) effector molecules and RAS-modulating drugs exert immunomodulatory effects, their impact onTrypanosoma cruziinfection remains poorly understood. By using the framework of a systematic review, we integrated the preclinical and clinical evidence to investigate the relevance of angiotensin-inhibiting drugs onT. cruziinfections. From a comprehensive and structured search in biomedical databases, only original studies were analysed. In preclinical and clinical studies, captopril, enalapril and losartan were RAS-modulating drugs used. The mainin vitrofindings indicated that these drugs increased parasite uptake per host cells, IL-12 expression by infected dendritic cells and IFN-γby T lymphocytes, in addition to attenuating IL-10 and IL-17 production by CD8 + T cells. In animal models, reduced parasitaemia, tissue parasitism, leucocytes infiltration and mortality were often observed inT. cruzi-infected animals receiving RAS-modulating drugs. In patients with Chagas’ disease, these drugs exerted a controversial impact on cytokine and hormone levels, and a limited effect on cardiovascular function. Considering a detailed evaluation of reporting and methodological quality, the current preclinical and clinical evidence is at high risk of bias, and we hope that our critical analysis will be useful in mitigating the risk of bias in further studies.
Collapse
|
5
|
Moreira DDS, Duarte AP, Pais FSM, da Silva-Pereira RA, Romanha AJ, Schenkman S, Murta SMF. Overexpression of eukaryotic initiation factor 5A (eIF5A) affects susceptibility to benznidazole in Trypanosoma cruzi populations. Mem Inst Oswaldo Cruz 2018; 113:e180162. [PMID: 30066751 PMCID: PMC6060400 DOI: 10.1590/0074-02760180162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/04/2018] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic initiation factor 5A (eIF5A) is a conserved protein with an essential role in translation elongation. Using one and two-dimensional western blotting, we showed that the eIF5A protein level was 2-fold lower in benznidazole (BZ)-resistant (BZR and 17LER) Trypanosoma cruzi populations than in their respective susceptible counterparts (BZS and 17WTS). To confirm the role of eIF5A in BZ resistance, we transfected BZS and 17WTS with the wild-type eIF5A or mutant eIF5A-S2A (in which serine 2 was replaced by alanine). Upon overexpressing eIF5A, both susceptible lines became approximately 3- and 5-fold more sensitive to BZ. In contrast, the eIF5A-S2A mutant did not alter its susceptibility to BZ. These data suggest that BZ resistance might arise from either decreasing the translation of proteins that require eIF5A, or as a consequence of differential levels of precursors for the hypusination reactions (e.g., spermidine and trypanothione), both of which alter BZ's effects in the parasite.
Collapse
Affiliation(s)
| | - Ana Paula Duarte
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | | | | | - Alvaro José Romanha
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | - Sergio Schenkman
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brasil
| | | |
Collapse
|
6
|
Berná L, Rodriguez M, Chiribao ML, Parodi-Talice A, Pita S, Rijo G, Alvarez-Valin F, Robello C. Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi. Microb Genom 2018; 4. [PMID: 29708484 PMCID: PMC5994713 DOI: 10.1099/mgen.0.000177] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzi’s genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a ‘core compartment’ and a ‘disruptive compartment’ which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes.
Collapse
Affiliation(s)
- Luisa Berná
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Matias Rodriguez
- 2Sección Biomatemática - Unidad de Genómica Evolutiva, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - María Laura Chiribao
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,3Departamento de Bioquímica, Facultad de Medicina-UDELAR, Montevideo, Uruguay
| | - Adriana Parodi-Talice
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,4Sección Genética, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Sebastián Pita
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,4Sección Genética, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Gastón Rijo
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- 2Sección Biomatemática - Unidad de Genómica Evolutiva, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Carlos Robello
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,3Departamento de Bioquímica, Facultad de Medicina-UDELAR, Montevideo, Uruguay
| |
Collapse
|
7
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
8
|
Chiranjivi AK, Dubey VK. Dihydrolipoamide dehydrogenase from Leishmania donovani: New insights through biochemical characterization. Int J Biol Macromol 2018; 112:1241-1247. [PMID: 29466712 DOI: 10.1016/j.ijbiomac.2018.02.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
Abstract
Dihydrolipoamide dehydrogenase (DLDH) regulates many crucial metabolic pathways as a multi-enzyme complex. Leishmania donovani dihydrolipoamide dehydrogenase (LdDLDH) has two variants present on two different chromosomes with very less sequence similarities. In the current study, we cloned both the variants in pET28a (+) vector and expressed in Rosetta-gami (DE3) E. coli strain. Expressed proteins were finally purified from pellets using Ni-NTA affinity chromatography. Purified enzymes were biochemically characterized and different kinetic parameters were studied. Both the variants showed maximum activity in pH range of 7.0-8.0 and temperature 50±5°C in the physiological direction. The estimated Km for dihydrolipoamide (DLA) and NAD+ were 2.7±0.48mM and 171.23±11.59μM respectively for variant 1 (LdBPK291950.1). In the case of variant 2 (LdBPK323510.1), Km values for DLA and NAD+ were found to be 829.85±37μM and 226±1.56μM respectively. The variant 2 was more efficient in terms of activity. While both the forms of the enzymes showed diaphorase activity, variant 1 was found to be better. Sequence dissimilarities of both forms were analyzed for biological insights.
Collapse
Affiliation(s)
- Adarsh Kumar Chiranjivi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
9
|
Franco J, Scarone L, Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|