1
|
Dos Santos JG, Fernandes CC, Silva NBS, Calefi GG, Martins CHG, Volpini GA, Crotti AEM, Ribeiro AB, Esperandim TR, Tavares DC, Batalini C, Miranda MLD. Volatile compounds of hexane extract from Pterodon pubescens Benth seeds and its significant in vitro potential against different bacterial strains. Nat Prod Res 2025; 39:1428-1433. [PMID: 38143320 DOI: 10.1080/14786419.2023.2297405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Pterodon pubescens Benth is a Brazilian medicinal plant (sucupira, in Brazilian Portuguese). This paper aims to determine the volatile composition and antibacterial activities of hexane extract from P. pubescens seeds (HE-PP). Antibacterial activities were screened by the microdilution broth method in 96-well culture plates and MIC values were expressed as µg/mL. HE-PP was active against several oral bacteria whose MIC values ranged between 12.5 µg/mL and 50 µg/mL and against three mycobacterial strains (MIC = 125 µg/mL and 500 µg/mL). In addition, HE-PP was active against Xanthomonas citri strain (MIC = 100 µg/mL). Cytotoxic activity of the extract was evaluated in human tumour and non-tumour cell lines. HE-PP showed selective cytotoxicity to cervical adenocarcinoma (HeLa cells - IC50 = 53.47 µg/mL). Its major constituents were identified by GC-MS and GC-FID: E-caryophyllene, vouacapane, E-geranylgeraniol and dehydroabietol. Results reinforce the biological potential of HE-PP against a broad spectrum of pathogenic and phytopathogenic bacteria.
Collapse
Affiliation(s)
- Jaciel G Dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, GO, Brazil
| | - Cassia C Fernandes
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, GO, Brazil
| | - Nagela B S Silva
- Laboratório de Ensaios Antimicrobiano (LEA), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Gabriel G Calefi
- Laboratório de Ensaios Antimicrobiano (LEA), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Carlos H G Martins
- Laboratório de Ensaios Antimicrobiano (LEA), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Guilherme A Volpini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antônio E M Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Mayker L D Miranda
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Campus Uberlândia Centro, MG, Brazil
| |
Collapse
|
2
|
Stability Studies and the In Vitro Leishmanicidal Activity of Hyaluronic Acid-Based Nanoemulsion Containing Pterodon pubescens Benth. Oil. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The physicochemical and microbiological stability of a hyaluronic acid-based nanostructured topical delivery system containing P. pubescens fruit oil was evaluated, and the in vitro antileishmanial activity of the nanoemulsion against Leishmania amazonensis and the cytotoxicity on macrophages was investigated. The formulation stored at 5 ± 2 °C, compared with the formulation stored at 30 and 40 ± 2 °C, showed a higher chemical and physical stability during the period analyzed and in the accelerated physical stability study. The formulation stored at 40 °C presented a significant change in droplet diameter, polydispersity index, zeta potential, pH, active compound, and consistency index and was considered unstable. The microbiological stability of the formulations was confirmed. The leishmanicidal activity of the selected system against intracellular amastigotes was significantly superior to that observed for the free oil. However, further research is needed to explore the use of the hyaluronic acid-based nanostructured system containing P. pubescens fruit oil for the treatment of cutaneous leishmaniasis.
Collapse
|
3
|
dos Santos DB, Lemos JA, Miranda SEM, Di Filippo LD, Duarte JL, Ferreira LAM, Barros ALB, Oliveira AEMFM. Current Applications of Plant-Based Drug Delivery Nano Systems for Leishmaniasis Treatment. Pharmaceutics 2022; 14:2339. [PMID: 36365157 PMCID: PMC9695113 DOI: 10.3390/pharmaceutics14112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/28/2023] Open
Abstract
Leishmania is a trypanosomatid that causes leishmaniasis. It is transmitted to vertebrate hosts during the blood meal of phlebotomine sandflies. The clinical manifestations of the disease are associated with several factors, such as the Leishmania species, virulence and pathogenicity, the host-parasite relationship, and the host's immune system. Although its causative agents have been known and studied for decades, there have been few advances in the chemotherapy of leishmaniasis. The urgency of more selective and less toxic alternatives for the treatment of leishmaniasis leads to research focused on the study of new pharmaceuticals, improvement of existing drugs, and new routes of drug administration. Natural resources of plant origin are promising sources of bioactive substances, and the use of ethnopharmacology and folk medicine leads to interest in studying new medications from phytocomplexes. However, the intrinsic low water solubility of plant derivatives is an obstacle to developing a therapeutic product. Nanotechnology could help overcome these obstacles by improving the availability of common substances in water. To contribute to this scenario, this article provides a review of nanocarriers developed for delivering plant-extracted compounds to treat clinical forms of leishmaniasis and critically analyzing them and pointing out the future perspectives for their application.
Collapse
Affiliation(s)
- Darline B. dos Santos
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| | - Janaina A. Lemos
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sued E. M. Miranda
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leonardo D. Di Filippo
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Lucas A. M. Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Andre L. B. Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anna E. M. F. M. Oliveira
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| |
Collapse
|
4
|
Chañi-Paucar LO, Johner JCF, Zabot GL, Meireles MAA. Technical and economic evaluation of supercritical CO2 extraction of oil from sucupira branca seeds. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
de Alcantara Lemos J, Oliveira AEMFM, Araujo RS, Townsend DM, Ferreira LAM, de Barros ALB. Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomed Pharmacother 2021; 143:112137. [PMID: 34507118 PMCID: PMC8963538 DOI: 10.1016/j.biopha.2021.112137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, utilization of medicinal plants by the pharmaceutical industry has led to the identification of many new bioactive compounds. The genus Pterodon, native of the Brazilian Flora, is known for the therapeutic properties attributed to its species, which are widely used in popular medicine for their anti-inflammatory, anti-rheumatic, tonic, and depurative properties. The intrinsic low water solubility of the plant derivatives from the genus, including diterpenes with vouacapane skeletons that are partially associated with the pharmacological activities, impairs the bioavailability of these bioactive compounds. Recent studies have aimed to encapsulate Pterodon products to improve their water solubility, achieve stability, increase their efficacy, and allow clinical applications. The purpose of this paper is to review recent research on the use of nanotechnology for the development of new products from plant derivatives of the Pterodon genus in different types of micro- and nanocarriers. Therapeutic properties of their different products are also presented. Finally, an update about the current and future applications of encapsulated formulations is provided.
Collapse
Affiliation(s)
- Janaina de Alcantara Lemos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Anna Eliza M F M Oliveira
- Department of Biological Sciences and Health, Universidade Federal do Amapá, 68903-329 Macapá, Amapá, Brazil
| | - Raquel Silva Araujo
- Department of Pharmacy, Pharmacy School, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Lucas Antonio Miranda Ferreira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Andre Luis Branco de Barros
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
7
|
Hyaluronic acid incorporation into nanoemulsions containing Pterodon pubescens Benth. Fruit oil for topical drug delivery. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Kawakami MYM, Zamora LO, Araújo RS, Fernandes CP, Ricotta TQN, de Oliveira LG, Queiroz-Junior CM, Fernandes AP, da Conceição EC, Ferreira LAM, Barros ALB, Aguiar MG, Oliveira AEMFM. Efficacy of nanoemulsion with Pterodon emarginatus Vogel oleoresin for topical treatment of cutaneous leishmaniasis. Biomed Pharmacother 2021; 134:111109. [PMID: 33341050 DOI: 10.1016/j.biopha.2020.111109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical skin disease caused by the protozoan genus Leishmania. The treatment is restricted to a handful number of drugs that exhibit toxic effects, limited efficacy, and drug resistance. Additionally, developing an effective topical treatment is still an enormous unmet medical challenge. Natural oils, e.g. the oleoresin from P. emarginatus fruits (SO), contain various bioactive molecules, especially terpenoid compounds such as diterpenes and sesquiterpenes. However, its use in topical formulations can be impaired due to the natural barrier of the skin for low water solubility compounds. Nanoemulsions (NE) are drug delivery systems able to increase penetration of lipophilic compounds throughout the skin, improving their topical effect. In this context, we propose the use of SO-containing NE (SO-NE) for CL treatment. The SO-NE was produced by a low energy method and presented suitable physicochemical characteristic: average diameter and polydispersity index lower than 180 nm and 0.2, respectively. Leishmania (Leishmania) amazonensis-infected BALB/c mice were given topical doses of SO or SO-NE. The topical use of a combination of SO-NE and intraperitoneal meglumine antimoniate reduced lesion size by 41 % and tissue regeneration was proven by histopathological analyses. In addition, a reduction in the parasitic load and decreased in the level of IFN-γ in the lesion may be associated, as well as a lower level of the cytokine IL-10 may be associated with a less intense inflammatory process. The present study suggests that SO-NE in combination meglumine antimoniate represents a promising alternative for the topical treatment of CL caused by L. (L.) amazonensis.
Collapse
Affiliation(s)
- Monique Y M Kawakami
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Lisset Ortiz Zamora
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Raquel S Araújo
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Caio P Fernandes
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Tiago Q N Ricotta
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro G de Oliveira
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edemilson C da Conceição
- Laboratory of Research, Development and Innovation of Bioproducts, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lucas A M Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André L B Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marta G Aguiar
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna E M F M Oliveira
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil.
| |
Collapse
|
9
|
Zaniol F, Calisto JF, Cozzer G, Ferro DM, Dias JL, Rodrigues LG, Mazzutti S, Rezende RS, Simões DA, Ferreira SR, Dal Magro J, Oliveira JV. Comparative larvicidal effect of Pterodon spp. extracts obtained by different extraction methods. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Abstract
AbstractThis systematic review investigated the evidence for the therapeutic potential of essential oils (EOs) against Leishmania amazonensis. We searched available scientific publications from 2005 to 2019 in the PubMed and Web of Science electronic databases, according to PRISMA statement. The search strategy utilized descriptors and free terms. The EOs effect of 35 species of plants identified in this systematic review study, 45.7% had half of the maximal inhibitory concentration (IC50) 10 < IC50 ⩽ 50 μg mL−1 and 14.3% had a 10 < IC50μg mL−1 for promastigote forms of L. amazonensis. EOs from Cymbopogon citratus species had the lowest IC50 (1.7 μg mL−1). Among the plant species analyzed for activity against intracellular amastigote forms of L. amazonensis, 39.4% had an IC50 10 < IC50 ⩽ 50 μg mL−1, and 33.3% had an IC50 10 < IC50μg mL−1. Aloysia gratissima EO showed the lowest IC50 (0.16 μg mL−1) for intracellular amastigotes. EOs of Chenopodium ambrosioides, Copaifera martii and Carapa guianensis, administered by the oral route, were effective in reducing parasitic load and lesion volume in L. amazonensis-infected BALB/c mice. EOs of Bixa orellana and C. ambrosioides were effective when administered intraperitoneally. Most of the studies analyzed in vitro and in vivo for the risk of bias showed moderate methodological quality. These results indicate a stimulus for the development of new phytotherapy drugs for leishmaniasis treatment.
Collapse
|
11
|
Selective extraction of bioactive compounds from annatto seeds by sequential supercritical CO2 process. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Developments in Taste-Masking Techniques for Traditional Chinese Medicines. Pharmaceutics 2018; 10:pharmaceutics10030157. [PMID: 30213035 PMCID: PMC6161181 DOI: 10.3390/pharmaceutics10030157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
A variety of pharmacologically active substances, including chemotherapeutic drugs and the substances from traditional Chinese medicine (TCM), always exhibit potent bioactivities after oral administration. However, their unpleasant taste (such as bitterness) and/or odor always decrease patient compliance and thus compromise their curative efficacies in clinical application. Therefore, the developments of taste-masking techniques are of great significance in improving their organoleptic properties. However, though a variety of taste-masking techniques have been successfully used to mask the unpalatable taste of chemotherapeutic drugs, their suitability for TCM substances is relatively limited. This is mainly due to the fact that the bitter ingredients existing in multicomponent TCM systems (i.e., effective fractions, single Chinese herbs, and compound preparations) are always unclear, and thus, there is lack of tailor-made taste-masking techniques to be utilized to conceal their unpleasant taste. The relevant studies are also relatively limited. As a whole, three types of taste-masking techniques are generally applied to TCM, including (i) functional masking via sweeteners, bitter blockers, and taste modifiers; (ii) physical masking via polymer film-coating or lipid barrier systems; and (iii) biochemical masking via intermolecular interaction, β-cyclodextrin inclusion, or ion-exchange resins. This review fully summarizes the results reported in this field with the purpose of providing an informative reference for relevant readers.
Collapse
|
13
|
Favareto R, Teixeira MB, Soares FAL, Belisário CM, Corazza ML, Cardozo-Filho L. Study of the supercritical extraction of Pterodon fruits (Fabaceae). J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|