1
|
Fracasso M, Pillat MM, Bottari NB, da Silva AD, Grando TH, Matos AFIM, Petry LS, Ulrich H, de Andrade CM, Monteiro SG, Da Silva AS. Trypanosoma evansi impacts on embryonic neural progenitor cell functions. Microb Pathog 2019; 136:103703. [PMID: 31476377 DOI: 10.1016/j.micpath.2019.103703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 01/03/2023]
Abstract
Trypanosoma evansi appears to have a significant tropism for brain tissue in its chronic and acute phases. The most common symptoms of this brain infection are motor incoordination, meningoencephalitis, demyelination, and anemia. There have only been few studies of the effects of T. evansi infection on neuronal differentiation and brain plasticity. Here, we investigated the impact of the congenital T. evansi infection on brain development in mice. We collected telencephalon-derived neural progenitor cells (NPCs) from T. evansi uninfected and infected mice, and cultivated them into neurospheres. We found that T. evansi significantly decreased the number of cells during development of neurospheres. Analysis of neurosphere differentiation revealed that T. evansi infection significantly increased neural migration. We also observed that T. evansi promoted expression of glial fibrillary acidic protein (GFAP) in infected cells. These data suggest that congenital T. evansi infection may affect embryonic brain development.
Collapse
Affiliation(s)
- Mateus Fracasso
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Micheli M Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - Nathieli B Bottari
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aniélen D da Silva
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Thirssa H Grando
- Graduate Program in Veterinary Medicine, Department of Parasitology, Microbiology and Immunology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Antonio F I M Matos
- Graduate Program in Veterinary Medicine, Department of Parasitology, Microbiology and Immunology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Letícia S Petry
- Graduate Program in Veterinary Medicine, Department of Parasitology, Microbiology and Immunology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Cinthia M de Andrade
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Graduate Program in Veterinary Medicine, Department of Parasitology, Microbiology and Immunology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Silvia G Monteiro
- Graduate Program in Veterinary Medicine, Department of Parasitology, Microbiology and Immunology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Graduate Program in Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil.
| |
Collapse
|