1
|
Wen Z, Amu J, Aimulajiang K, Feng J, Chen C, Xu Y, Lu M, Xu L, Song X, Li X, Yan R. Enzymes involved in trehalose-chitin synthesis in Haemonchus contortus could be vaccine candidates for goats. Parasit Vectors 2025; 18:61. [PMID: 39980073 PMCID: PMC11841196 DOI: 10.1186/s13071-025-06703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/30/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Trehalose-6-phosphate synthase (HcTPS) and trehalose-6-phosphate phosphatase (HcGOB) are key enzymes for trehalose synthesis in Haemonchus contortus. In addition, previous studies have also demonstrated that HcTPS and HcGOB can regulate the function of host immune cells in vitro, and are important immunosuppressive molecules. Therefore, this study evaluated the potential of HcTPS and HcGOB as vaccine candidates through in vitro and in vivo experiments. METHODS To evaluate the inhibitory effects of polyclonal antibodies on egg hatching and larval development, anti-rHcTPS and anti-rHcGOB antibodies were incubated separately with eggs and first-stage larvae (L1s) under controlled in vitro conditions. For immunization studies, recombinant proteins (rHcTPS and rHcGOB) were formulated with Quil-A adjuvant, and administered to goats through subcutaneous injection. Vaccine efficacy against Haemonchus contortus infection was determined through comprehensive analysis of multiple parasitological parameters, including: (1) egg abnormality rate, (2) hatching success rate, (3) reduction egg output rates, and (4) reduction in adult worm burden. RESULTS The results of in vitro experiments showed that polyclonal antibodies against HcTPS and HcGOB had no effect on the hatching rate of eggs, but significantly affected the development from L1s to infectious third stage larvae (L3s). After immunization with recombinant HcTPS protein (rHcTPS) and recombinant HcGOB protein (rHcGOB), high levels of antigen-specific immunoglobulin G (IgG) were produced in goats, and remained till the end of the experiment. Compared with the Quil-A adjuvant control group, the number of deformed eggs in the rHcTPS protein- immunized group and the rHcGOB protein- immunized group were significantly increased. In the rHcTPS protein-immunized group and the rHcGOB protein-immunized group, the deformity rate of eggs was 9.59% and 17.30%, respectively, and the hatching rate of eggs was reduced by 11.27% and 13.71%, respectively. Moreover, compared with the Quil-A adjuvant control group, the number of eggs and adults in the HcTPS protein- immunized group decreased by 64.47% and 60.93%, respectively, and the number of eggs and adults in the rHcGOB protein- immunized group decreased by 63.97% and 69.54%, respectively. Furthermore, compared with the control group (Quil-A adjuvant), the trehalose content in the rHcTPS protein- immunized group and the rHcGOB protein- immunized group was also significantly reduced. CONCLUSIONS These findings indicate that rHcTPS and rHcGOB exhibit superior immune protective effects, rendering them promising candidates for vaccine development.
Collapse
Affiliation(s)
- Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Jilata Amu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Jiajun Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yongde Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Monteiro EDS, da Silva FS, Gomes KO, do Prado BA, dos Santos RD, Gomes da Camara CA, de Moraes MM, da Silva ICR, de Macêdo VT, Gelfuso GM, de Sá Barreto LCL, Orsi DC. Characterization and Determination of the Antibacterial Activity of Baccharis dracunculifolia Essential-Oil Nanoemulsions. Antibiotics (Basel) 2023; 12:1677. [PMID: 38136711 PMCID: PMC10740613 DOI: 10.3390/antibiotics12121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to evaluate the antibacterial activity of nanoemulsions of Baccharis dracunculifolia essential oil. The volatile compounds of the essential oil were identified using gas chromatography-mass spectrometry. The properties of the nanoemulsions (droplet size, polydispersity index, pH, and electrical conductivity) were determined. The antibacterial activities of the essential oil and its nanoemulsions were evaluated using MIC, MBC, and disk diffusion. The microorganisms used were: Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 14579, Streptococcus mutans ATCC 25175, and Enterococcus faecalis ATCC 29212) and Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC BAA-1706, Salmonella enterica ATCC 14028, and Escherichia coli ATCC 25922). The major volatile compounds of the B. dracunculifolia essential oil were limonene (19.36%), (E)-nerolidol (12.75%), bicyclogermacrene (10.76%), and β-pinene (9.60%). The nanoemulsions had a mean droplet size between 13.14 and 56.84 nm. The nanoemulsions presented lower and statistically significant MIC values compared to the essential oil, indicating enhancement of the bacteriostatic action. The disk diffusion method showed that both the nanoemulsions and the essential oil presented inhibition zones only for Gram-positive bacteria, while there were no results against Gram-negative bacteria, indicating that B. dracunculifolia essential oil has a better antimicrobial effect on Gram-positive microorganisms.
Collapse
Affiliation(s)
- Erika da Silva Monteiro
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Franklyn Santos da Silva
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Karolina Oliveira Gomes
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Bruno Alcântara do Prado
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Rebeca Dias dos Santos
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | | | - Marcilio Martins de Moraes
- Department of Chemistry, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (C.A.G.d.C.); (M.M.d.M.)
| | - Izabel Cristina Rodrigues da Silva
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Vinicius Teixeira de Macêdo
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Guilherme Martins Gelfuso
- Laboratory of Food, Drugs, and Cosmetics, University of Brasília, Brasília 70910-900, DF, Brazil; (G.M.G.); (L.C.L.d.S.B.)
| | | | - Daniela Castilho Orsi
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| |
Collapse
|