1
|
Zhao L, Liao J, Wang T, Zhao H. Enhancement of Nutritional Value and Sensory Characteristics of Quinoa Fermented Milk via Fermentation with Specific Lactic Acid Bacteria. Foods 2025; 14:1406. [PMID: 40282807 PMCID: PMC12026847 DOI: 10.3390/foods14081406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Quinoa has garnered significant attention for its richness in a variety of nutritional and functional components. Herein, quinoa was fermented with individual or a combination of various lactic acid bacteria (LAB) strains to assess the impact of fermentation on nutrients, functional components, and digestibility. The results indicate that specific LAB fermentation significantly decreased the starch and dietary fiber content while markedly increasing the content and antioxidant capacity of free phenolics. The highest content of free phenolics in fermented quinoa reached 5.64 mg GAE/g, with a 2.01-fold increase in bioavailability. A comprehensive PCA evaluation identified the MS2 mixed strain (a 1:1:1 mixture of L. casei89, L. fermentum61, and L. rhamnosus05) as a superior quinoa fermentation agent. Quinoa fermented milk prepared with MS2 exhibited favorable taste and aroma properties. After 21 days of storage, the viable bacteria count remained above 10 log CFU/mL, and both the water-holding capacity and suspension stability were still strong. This study provides practical evidence for developing quinoa into a functional food.
Collapse
Affiliation(s)
- Li Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | | | | | | |
Collapse
|
2
|
Fan Y, Yang X, Hu C, Wei B, Xu F, Guo Q. Fermentation Performance Evaluation of Lactic Acid Bacteria Strains for Sichuan Radish Paocai Production. Foods 2024; 13:1813. [PMID: 38928755 PMCID: PMC11202693 DOI: 10.3390/foods13121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Fermented vegetable products play a significant role in various cuisines, and understanding the fermentation dynamics of lactic acid bacteria (LAB) strains is essential for optimizing their production and quality. Here, we sought to investigate the fermentation performance of five LAB strains isolated from Sichuan paocai as starters for paocai. Sensory evaluation revealed that the inoculation of radish paocai samples with LAB strains effectively improved the overall liking and sensory satisfaction of participants, increasing the scores to varying degrees in terms of taste, flavor, texture, and coloration. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus exhibited a good salt resistance in radish juice and could grow in a medium containing 10% NaCl. Four indicator strains commonly found in contaminated paocai were effectively inhibited by fermented LAB broths, which improved the edibility and safe production of paocai. Compared to spontaneous fermentation (CK), radish paocai inoculated with LAB showed a significantly accelerated acid production rate, shortening the fermentation period by approximately two days. The contents of titratable total acids, organic acids, and free amino acids were higher in the inoculated samples and were enriched in the taste of radish paocai. The content of volatile organic compounds in the inoculated samples was higher than that in CK. Based on OPLS-DA analysis, 31 key indicators of paocai quality were screened and used to rank the fermentation performances of the five strains using the TOPSIS method; here, Lpb. plantarum and Lcb. rhamnosus achieved the highest scores. This study provides a reference for selecting LAB strains as efficient and secure fermentation starters to optimize paocai quality.
Collapse
Affiliation(s)
- Yiwen Fan
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Xu Yang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Cihai Hu
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Banghong Wei
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Fei Xu
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Quanyou Guo
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| |
Collapse
|
3
|
Michalak-Tomczyk M, Rymuszka A, Kukula-Koch W, Szwajgier D, Baranowska-Wójcik E, Jachuła J, Welman-Styk A, Kędzierska K. Studies on the Effects of Fermentation on the Phenolic Profile and Biological Activity of Three Cultivars of Kale. Molecules 2024; 29:1727. [PMID: 38675547 PMCID: PMC11052505 DOI: 10.3390/molecules29081727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Fermentation is used not only to preserve food but also to enhance its beneficial effects on human health and achieve functional foods. This study aimed to investigate how different treatments (spontaneous fermentation or fermentation with the use of starter culture) affect phenolic content, antioxidant potential, and cholinesterase inhibitory activity in different kale cultivars: 'Halbhoner Grüner Krauser', 'Scarlet', and 'Nero di Toscana'. Chosen samples were further tested for their protective potential against the Caco-2 cell line. HPLC-MS analysis revealed that the fermentation affected the composition of polyphenolic compounds, leading to an increase in the content of rutin, kaempferol, sinapinic, and protocatechuic acids. In general, kale cultivars demonstrated various antioxidant activities, and fermentation led to an increase in total phenolic content and antioxidant activity. Fermentation boosted anti-cholinesterase activity most profoundly in 'Nero di Toscana'. Extracts of spontaneously fermented 'Scarlet' (SS) and 'Nero di Toscana' (NTS) showed cytoprotective properties, as revealed by the malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) assays. Additionally, strong anti-inflammatory activity of NTS was shown by decreased release of cytokines IL-1β and TNF-α. Collectively, the conducted studies suggest fermented kale cultivars as a potential source for functional foods.
Collapse
Affiliation(s)
- Magdalena Michalak-Tomczyk
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland; (A.R.); (A.W.-S.); (K.K.)
| | - Anna Rymuszka
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland; (A.R.); (A.W.-S.); (K.K.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Jacek Jachuła
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Agnieszka Welman-Styk
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland; (A.R.); (A.W.-S.); (K.K.)
| | - Kinga Kędzierska
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland; (A.R.); (A.W.-S.); (K.K.)
| |
Collapse
|
4
|
An J, Sun L, Liu M, Dai R, Ge G, Wang Z, Jia Y. Influences of Growth Stage and Ensiling Time on Fermentation Characteristics, Nitrite, and Bacterial Communities during Ensiling of Alfalfa. PLANTS (BASEL, SWITZERLAND) 2023; 13:84. [PMID: 38202392 PMCID: PMC10780930 DOI: 10.3390/plants13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
This study examined the impacts of growth stage and ensiling duration on the fermentation characteristics, nitrite content, and bacterial communities during the ensiling of alfalfa. Harvested alfalfa was divided into two groups: vegetative growth stage (VG) and late budding stage (LB). The fresh alfalfa underwent wilting until reaching approximately 65% moisture content, followed by natural fermentation. The experiment followed a completely randomized design, with samples collected after the wilting of alfalfa raw materials (MR) and on days 1, 3, 5, 7, 15, 30, and 60 of fermentation. The growth stage significantly influenced the chemical composition of alfalfa, with crude protein content being significantly higher in the vegetative growth stage alfalfa compared to that in the late budding stage (p < 0.05). Soluble carbohydrates, neutral detergent fiber, and acid detergent fiber content were significantly lower in the vegetative growth stage compared to the late budding stage (p < 0.05). Nitrite content, nitrate content, nitrite reductase activity, and nitrate reductase activity were all significantly higher in the vegetative growth stage compared to the late budding stage (p < 0.05). In terms of fermentation parameters, silage from the late budding stage exhibited superior characteristics compared to that from the vegetative growth stage. Compared to the alfalfa silage during the vegetative growth stage, the late budding stage group exhibited a higher lactate content and lower pH level. Notably, butyric acid was only detected in the silage from the vegetative growth stage group. Throughout the ensiling process, nitrite content, nitrate levels, nitrite reductase activity, and nitrate reductase activity decreased in both treatment groups. The dominant lactic acid bacteria differed between the two groups, with Enterococcus being predominant in vegetative growth stage alfalfa silage, and Weissella being predominant in late budding stage silage, transitioning to Lactiplantibacillus in the later stages of fermentation. On the 3rd day of silage fermentation, the vegetative growth stage group exhibited the highest abundance of Enterococcus, which subsequently decreased to its lowest level on the 15th day. Correlation analysis revealed that lactic acid bacteria, including Limosilactobacillus, Levilactobacillus, Loigolactobacillus, Pediococcus, Lactiplantibacillus, and Weissella, played a key role in nitrite and nitrate degradation in alfalfa silage. The presence of nitrite may be linked to Erwinia, unclassified_o__Enterobacterales, Pantoea, Exiguobacterium, Enterobacter, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium.
Collapse
Affiliation(s)
- Jiangbo An
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China;
| | - Mingjian Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Rui Dai
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| |
Collapse
|
5
|
Kim GY, Kim SA, Kong SY, Seong H, Bae JH, Han NS. Synergistic Antioxidant and Anti-Inflammatory Activities of Kale Juice Fermented with Limosilactobacills reuteri EFEL6901 or Limosilactobacills fermentum EFEL6800. Antioxidants (Basel) 2023; 12:1850. [PMID: 37891929 PMCID: PMC10604225 DOI: 10.3390/antiox12101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigates the synergistic impact of fermenting kale juice with Limosilactobacillus strains on its antioxidant and anti-inflammatory properties. Kale's rich nutrient profile, especially its flavonoids, offers potential health benefits. Probiotic lactic acid bacteria are employed in kale fermentation to enhance nutrient bioavailability and generate bioactive compounds. Kale juices fermented with L. reuteri EFEL6901 or L. fermentum EFEL6800 exhibited superior microbial growth. Free sugars and amino acids were converted to alcohols and organic acids, affecting the organoleptic and health-related properties of the product. In addition, fermentation increased quercetin and kaempferol content, indicating improved availability. Furthermore, the fermented juice exhibited notable antioxidant activity and suppressed nitric oxide (NO) production, revealing anti-inflammatory potential. Gene expression analysis confirmed reduced pro-inflammatory markers such as iNOS, COX-2, IL-6, and IL-1β and elevated anti-inflammatory cytokines, including IL-10. This research highlights the promising potential of fermented kale juice, enriched with Limosilactobacillus strains, as a functional food with combined antioxidant and anti-inflammatory benefits.
Collapse
Affiliation(s)
| | | | | | | | | | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (G.Y.K.); (S.-A.K.); (S.Y.K.); (H.S.); (J.-H.B.)
| |
Collapse
|
6
|
Development of a mixed fruit beverage and pulsed light treatment thereof to obtain a microbially safe and enzymatically stable product. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
UmaMaheswari T, Anbukkarasi K, Hemalatha T, Singh R. GTG5 fingerprinting of native Streptococcus thermophilus strains and its authentication by principal component analysis – A road to value added commercial yoghurt starter cultures. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Szutowska J, Gwiazdowska D, Rybicka I, Pawlak-Lemańska K, Biegańska-Marecik R, Gliszczyńska-Świgło A. Controlled fermentation of curly kale juice with the use of autochthonous starter cultures. Food Res Int 2021; 149:110674. [PMID: 34600676 DOI: 10.1016/j.foodres.2021.110674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 01/17/2023]
Abstract
The aim of this paper was to evaluate the influence of different indigenous lactic acid bacteria isolates - as a single culture or bacterial consortium - on the functional and physicochemical properties of fermented curly kale juice. All tested variants exhibited good growth parameters, manifested by efficient pH lowering, increases in acidity, and fructose and glucose metabolism, as well as a significant inhibition of pathogens. A slight increase in total phenolic content was observed, while antioxidant activity remained unchanged. L. sakei and MIX A were associated with an increase in riboflavin and pyridoxine content, while L. plantarum only contributed to an increase in vitamin B6 content. Bioconversion of individual phenolic compounds, carotenoids, and glucosinolates strongly depended on the strain-specific metabolism. In the process, the levels of ferulic acid and other hydroxycinnamic acids were maintained, while the content of 9-cis lutein increased. Considering presented results and our previous research regarding probiotic features of LAB strains, among tested starter cultures - L. plantarum seemed to possess the best characteristics as a potential starter culture for controlled fermentation of curly kale juice.
Collapse
Affiliation(s)
- Julia Szutowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland.
| | - Daniela Gwiazdowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland
| | - Iga Rybicka
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland
| | - Katarzyna Pawlak-Lemańska
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland
| | - Róża Biegańska-Marecik
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Ul. Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Anna Gliszczyńska-Świgło
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland
| |
Collapse
|
9
|
Ahmed S, Ashraf F, Tariq M, Zaidi A. Aggrandizement of fermented cucumber through the action of autochthonous probiotic cum starter strains of Lactiplantibacillus plantarum and Pediococcus pentosaceus. ANN MICROBIOL 2021; 71:33. [PMID: 34483789 PMCID: PMC8406656 DOI: 10.1186/s13213-021-01645-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Cucumber fermentation is traditionally done using lactic acid bacteria. The involvement of probiotic cultures in food fermentation guarantees enhanced organoleptic properties and protects food from spoilage. Methods Autochthonous lactic acid bacteria were isolated from spontaneously fermented cucumber and identified to species level. Only strains adjudged as safe for human consumption were examined for their technological and functional characteristics. Strain efficiency was based on maintaining high numbers of viable cells during simulated GIT conditions and fermentation, significant antioxidant activity, EPS production, nitrite degradation, and antimicrobial ability against Gram-positive and Gram-negative foodborne pathogens. Result Two strains, Lactiplantibacillus plantarum NPL 1258 and Pediococcus pentosaceus NPL 1264, showing a suite of promising functional and technological attributes, were selected as a mixed-species starter for carrying out a controlled lactic acid fermentations of a native cucumber variety. This consortium showed a faster lactic acid-based acidification with more viable cells, at 4% NaCl and 0.2% inulin (w/v) relative to its constituent strains when tested individually. Sensory evaluation rated the lactofermented cucumber acceptable based on texture, taste, aroma, and aftertaste. Conclusion The results suggest that the autochthonous LAB starter cultures can shorten the fermentation cycle and reduce pathogenic organism’ population, thus improving the shelf life and quality of fermented cucumber. The development of these new industrial starters would increase the competitiveness of production and open the country’s frontiers in the fermented vegetable market.
Collapse
Affiliation(s)
- Sadia Ahmed
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| | - Fatima Ashraf
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| |
Collapse
|
10
|
Pimentel TC, Gomes de Oliveira LI, de Lourdes Chaves Macedo E, Costa GN, Dias DR, Schwan RF, Magnani M. Understanding the potential of fruits, flowers, and ethnic beverages as valuable sources of techno-functional and probiotics strains: Current scenario and main challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|