1
|
Peshkova A, Zinicovscaia I, Cepoi L, Rudi L, Chiriac T, Yushin N, Ganea L. Evaluation of the Effects of High Silver and Copper Nanoparticle Concentrations on Vaccinium myrtillus L. under Field Conditions. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1545. [PMID: 39404272 PMCID: PMC11478028 DOI: 10.3390/nano14191545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
The extensive development of nanotechnologies has allowed nanoparticles to impact living systems through different pathways. The effect of single exposure to high concentrations of silver and copper nanoparticles (50-200 mg/L) on Vaccinium myrtillus L. under field conditions was investigated. Nanoparticle uptake in different segments of Vaccinium myrtillus L. was assessed by applying inductively coupled plasma-atomic emission spectroscopy and a particle-induced X-ray emission technique. Copper nanoparticles mainly accumulated in the roots and leaves, while silver nanoparticles showed a higher affinity for the roots and berries. The nanoparticles' effects on the pigments and antioxidant activity of the plant's leaves were also evaluated. The possible human health risk associated with the consumption of nanoparticle-contaminated berries was assessed. The results indicated that the consumption of berries contaminated with nanoparticles presented a low risk for human health.
Collapse
Affiliation(s)
- Alexandra Peshkova
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia
- Doctoral School Biological, Geonomic, Chemical and Technological Science, State University of Moldova, 60 Alexei Mateevici Str., MD-2009 Chisinau, Moldova
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Măgurele, Romania
| | - Liliana Cepoi
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1 Academiei Str., MD-2028 Chisinau, Moldova
| | - Ludmila Rudi
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1 Academiei Str., MD-2028 Chisinau, Moldova
| | - Tatiana Chiriac
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1 Academiei Str., MD-2028 Chisinau, Moldova
| | - Nikita Yushin
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia
- Doctoral School Biological, Geonomic, Chemical and Technological Science, State University of Moldova, 60 Alexei Mateevici Str., MD-2009 Chisinau, Moldova
| | - Larisa Ganea
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Măgurele, Romania
| |
Collapse
|
2
|
Török AI, Moldovan A, Kovacs E, Cadar O, Becze A, Levei EA, Neag E. Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7243. [PMID: 36295307 PMCID: PMC9611884 DOI: 10.3390/ma15207243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The new context of the intensive use of lithium-based batteries led to increased production of Li and Li-containing wastes. All these activities are potential sources of environmental pollution with Li. However, the negative impact of Li on ecosystems, its specific role in the plants' development, uptake mechanism, and response to the induced stress are not fully understood. In this sense, the Li uptake and changes induced by Li exposure in the major and trace element contents, photosynthetic pigments, antioxidant activity, and elemental composition of Salvinia natans were also investigated. The results showed that Salvinia natans grown in Li-enriched nutrient solutions accumulated much higher Li contents than those grown in spring waters with a low Li content. However, the Li bioaccumulation factor in Salvinia natans grown in Li-enriched nutrient solutions was lower (13.3-29.5) than in spring waters (13.0-42.2). The plants exposed to high Li contents showed a decrease in their K and photosynthetic pigments content, while their total antioxidant activity did not change substantially.
Collapse
Affiliation(s)
- Anamaria Iulia Török
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Ana Moldovan
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Eniko Kovacs
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Anca Becze
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Erika Andrea Levei
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Emilia Neag
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Tang CC, Wang TY, Zhang XY, Wang R, He ZW, Li Z, Wang XC. Role of types and dosages of cations with low valance states on microalgal-bacterial symbiosis system treating wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127755. [PMID: 35944866 DOI: 10.1016/j.biortech.2022.127755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the roles of cations with low valance states, including Mg2+, K+ and Li+, on microalgal-bacterial symbiosis (MABS) system treating wastewater. Results showed that Mg2+ and K+ improved pollutants removal at dosages of less than 1 mM, and a further increase led to poorer performances. Conversely, Li+ inhibited pollutants removal. Mechanism study indicated Mg2+ and K+ with dosages of 10 mM and Li + inhibited the activities of MABS biomass (especially Chlorella), with bad absorption efficiencies of 20.64 %, 13.65 % and lower than 10 %, leading to more extracellular polymeric substances production. Larger ions' charge density resulted in larger attraction of water molecules, contributing to the decreased distance between microalgae cells and increased biomass aggregation. Both these two impacts led to the order of impact degree on MABS aggregates: Mg2+ > Li+ > K+. The findings can present some new perspectives on assessing effects of cations on MABS system.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tian-Yang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin-Yi Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rong Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|
4
|
Zhou T, Li X, Zhang Q, Dong S, Liu H, Liu Y, Chaves AV, Ralph PJ, Ruan R, Wang Q. Ecotoxicological response of Spirulina platensis to coexisted copper and zinc in anaerobic digestion effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155874. [PMID: 35568173 DOI: 10.1016/j.scitotenv.2022.155874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Copper ion (Cu2+) and zinc ion (Zn2+) are widely co-existent in anaerobic digestion effluent as typical contaminants. This work aims to explore how Cu2+-Zn2+ association affects physiological properties of S. platensis using Schlösser medium (SM) and sterilized anaerobic digestion effluent (SADE). Microalgae cells viability, biochemical properties, uptake of Cu2+ and Zn2+, and risk assessment associated with the biomass reuse as additives to pigs were comprehensively assessed. Biomass production ranged from 0.03 to 0.28 g/L in SM and 0.63 to 0.79 g/L in SADE due to the presence of Cu2+ and Zn2+. Peak value of chlorophyll-a and carotenoid content during the experiment decreased by 70-100% and 40-100% in SM, and by 70-77% and 30-55% in SADE. Crude protein level reduced by 4-41% in SM and by 65-75% in SADE. The reduction ratio of these compounds was positively related to the Cu2+ and Zn2+ concentrations. Maximum value of saturated and unsaturated fatty acids was both obtained at 0.3 Cu + 2.0 Zn (50.8% and 22.8%, respectively) and 25% SADE reactors (33.8% and 27.7%, respectively). Uptake of Cu in biomass was facilitated by Zn2+ concentration (> 4.0 mg/L). Risk of S. platensis biomass associated with Cu2+ was higher than Zn2+. S. platensis from SM (Cu2+ ≤ 0.3 mg/L and Zn2+ ≤ 4.0 mg/L) and diluted SADE (25% and 50% SADE) reactors could be used as feed additives without any risk (hazard index <1), which provides sufficient protein and fatty acids for pig consumption. These results revealed the promising application of using S. platensis for bioremediation of Cu2+ and Zn2+ in anaerobic digestion effluent and harvesting biomass for animal feed additives.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shiman Dong
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Alex V Chaves
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
5
|
Cepoi L, Zinicovscaia I, Rudi L, Chiriac T, Djur S, Yushin N, Grozdov D. Assessment of Metal Accumulation by Arthrospira platensis and Its Adaptation to Iterative Action of Nickel Mono- and Polymetallic Synthetic Effluents. Microorganisms 2022; 10:microorganisms10051041. [PMID: 35630483 PMCID: PMC9147461 DOI: 10.3390/microorganisms10051041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria-mediated wastewater remediation is an economical, efficient, and eco-friendly technology. The present work deals with the bioaccumulation performance of Arthrospira platensis (Spirulina) grown for four cycles in a medium containing nickel mono- and polymetallic synthetic effluents. The metal uptake by spirulina biomass was evaluated using neutron activation analysis. The effects of effluents on biomass production, protein, and phycobiliprotein content were assessed. Metal accumulation in the biomass depended on the effluent composition and metal ion concentrations. Nickel accumulation in the biomass was directly proportional to its concentration in effluents, and maximum uptake (1310 mg/kg) was attained in the Ni/Cr/Fe system. In the same system, biomass accumulated 110 times more chromium and 4.7 times more iron than control. The highest accumulation of copper (2870 mg/kg) was achieved in the Ni/Cu/Zn/Mo system and zinc (1860 mg/kg)—in the Ni/Cu/Zn/Sr system. In biomass grown in the media loaded with nickel and also chromium, iron, copper, strontium, zinc, and molybdenum, a decrease in productivity (on average by 10%) during the first cycle of cultivation and moderate reduction of protein content (by 15–27%) was observed. The presence of metals in the cultivation media inhibited phycobiliprotein synthesis, especially of phycocyanin, and promoted the synthesis of allophycocyanin. The maximum reduction of phycocyanin content was 77%, and the increase of allophycocyanin content—by 45%. Arthrospira platensis may be deemed as bioremediation of nickel-polluted wastewaters of complex composition.
Collapse
Affiliation(s)
- Liliana Cepoi
- Institute of Microbiology and Biotechnology, 1, Academiei Str., MD-2028 Chisinau, Moldova; (L.C.); (L.R.); (T.C.); (S.D.)
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 1419890 Dubna, Russia; (N.Y.); (D.G.)
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str., Magurele, MG-6, 077125 Bucharest, Romania
- Institute of Chemistry, 3, Academiei Str., MD-2028 Chisinau, Moldova
- Correspondence: ; Tel.: +7-4962165609
| | - Ludmila Rudi
- Institute of Microbiology and Biotechnology, 1, Academiei Str., MD-2028 Chisinau, Moldova; (L.C.); (L.R.); (T.C.); (S.D.)
| | - Tatiana Chiriac
- Institute of Microbiology and Biotechnology, 1, Academiei Str., MD-2028 Chisinau, Moldova; (L.C.); (L.R.); (T.C.); (S.D.)
| | - Svetlana Djur
- Institute of Microbiology and Biotechnology, 1, Academiei Str., MD-2028 Chisinau, Moldova; (L.C.); (L.R.); (T.C.); (S.D.)
| | - Nikita Yushin
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 1419890 Dubna, Russia; (N.Y.); (D.G.)
| | - Dmitrii Grozdov
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 1419890 Dubna, Russia; (N.Y.); (D.G.)
| |
Collapse
|