1
|
Castro V, Teixeira A, Simões L, Chamorro F, Lourenço-Lopes C, Parreira C, Badenes SM, Costa L, Prieto MA, Oliveira R, Dias ACP. Chemical characterization and antioxidant potential of Arthrospira sp., Thalassiosira sp., and Raphidonema sp. Food Chem 2025; 469:142554. [PMID: 39721437 DOI: 10.1016/j.foodchem.2024.142554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Microalgae are emerging as valuable sources of bioactive compounds. This study evaluates hexane extracts from Thalassiosira sp. and Raphidonema sp., and Arthrospira sp., for their bioactive potential. Saturated fatty acids predominated in Arthrospira sp. and Thalassiosira sp. while Raphidonema was rich in polyunsaturated fatty acids. Carotenoids, such as carotenes and xanthophylls, were abundant in Arthrospira sp., while Thalassiosira sp. contained chlorophylls and fucoxanthin derivatives, and Raphidonema sp. showed high levels of chlorophylls and xanthophylls. Antioxidant assays revealed up to 70 % radical scavenging activity, 60 % iron chelation, and up to 67 (μM) ferric-reducing power. Dose-dependent protective effects were observed in Schizosaccharomyces pombe and HepG2 cells, with viability improvements up to 50 %, indicating their potential as antioxidant-rich ingredients for functional foods, promoting health and disease prevention. This study enhances our understanding of Thalassiosira sp. and Raphidonema sp. while underscoring the promising applications of microalgae extracts in functional foods.
Collapse
Affiliation(s)
- Vera Castro
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; IBS, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Teixeira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luara Simões
- Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Celina Parreira
- A4F - Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| | - Sara M Badenes
- A4F - Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| | - Luís Costa
- A4F - Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Rui Oliveira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Alberto C P Dias
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; IBS, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
2
|
Luo G, Liu H, Yang S, Sun Z, Sun L, Wang L. Manufacturing processes, additional nutritional value and versatile food applications of fresh microalgae Spirulina. Front Nutr 2024; 11:1455553. [PMID: 39296509 PMCID: PMC11409848 DOI: 10.3389/fnut.2024.1455553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Spirulina is capable of using light energy and fixing carbon dioxide to synthesize a spectrum of organic substances, including proteins, polysaccharides, and unsaturated fatty acids, making it one of the most coveted food resources for humanity. Conventionally, Spirulina products are formulated into algal powder tablets or capsules. However, the processing and preparation of these products, involving screw pump feeding, extrusion, high-speed automation, and high-temperature dewatering, often result in the rupture of cell filaments, cell fragmentation, and the unfortunate loss of vital nutrients. In contrast, fresh Spirulina, cultivated within a closed photobioreactor and transformed into an edible delight through harvesting, washing, filtering, and sterilizing, presents a refreshing taste and odor. It is gradually earning acceptance as a novel health food among the general public. This review delves into the manufacturing processes of fresh Spirulina, analyzes its nutritional advantages over conventional algal powder, and ultimately prospects the avenues for fresh Spirulina's application in modern food processing. The aim is to provide valuable references for the research and development of new microalgal products and to propel the food applications of microalgae forward.
Collapse
Affiliation(s)
- Guanghong Luo
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye, China
| | - Haiyan Liu
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye, China
| | - Shenghui Yang
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye, China
| | - Zhongliang Sun
- College of Life Sciences, Yantai University, Yantai, China
| | - Liqin Sun
- College of Life Sciences, Yantai University, Yantai, China
| | - Lijuan Wang
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye, China
| |
Collapse
|
3
|
Durdakova M, Kolackova M, Janova A, Krystofova O, Adam V, Huska D. Microalgae/cyanobacteria: the potential green future of vitamin B 12 production. Crit Rev Food Sci Nutr 2022; 64:3091-3102. [PMID: 36222060 DOI: 10.1080/10408398.2022.2130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review summarizes the available information about potential sources of vitamin B12, especially for people who follow a vegan or vegetarian diet and inhabitants of poor countries in the developing world. Cyanobacteria and microalgae approved for food purposes can play a critical role as promising and innovative sources of this vitamin. This work involves a discussion of whether the form of vitamin B12 extracted from microalgae/cyanobacteria is biologically available to humans, specifically focusing on the genera Arthrospira and Chlorella. It describes analyses of their biomass composition, cultivation requirements, and genetic properties in B12 production. Furthermore, this review discusses the function of cobalamin in microalgae and cyanobacteria themselves and the possibility of modification and cocultivation to increase the content of B12 in their biomass.
Collapse
Affiliation(s)
- Michaela Durdakova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| |
Collapse
|
4
|
Georgiev YN, Batsalova TG, Dzhambazov BM, Ognyanov MH, Denev PN, Antonova DV, Wold CW, Yanakieva IZ, Teneva II, Paulsen BS, Simova SD. Immunomodulating polysaccharide complexes and antioxidant metabolites from Anabaena laxa, Oscillatoria limosa and Phormidesmis molle. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|