1
|
Wang SQ, Meng YQ, Wu YL, Nan JX, Jin CH, Lian LH. Imidazole-Based ALK5 Inhibitor Attenuates TGF-β/Smad-Mediated Hepatic Stellate Cell Activation and Hepatic Fibrogenesis. Chem Res Toxicol 2025; 38:930-941. [PMID: 40211771 DOI: 10.1021/acs.chemrestox.5c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Liver fibrosis resulting from severe liver damage is a major clinical problem for which effective pharmacological drugs and treatment strategies are lacking. TGF-β, a hallmark of liver fibrosis, has been shown to promote ALK5 phosphorylation in an activated state. Hence, the suppression of ALK5 signal transduction has emerged as a promising therapeutic strategy for the treatment of liver fibrosis. In this study, the imidazole derivative J-1149, which exhibited inhibitory activity against ALK5, was synthesized to exert antifibrotic effects, and the inhibition mechanisms were uncovered. Our findings suggested that J-1149 significantly attenuated HSC activation and liver fibrogenesis by acting on the TGF-β/Smad signaling pathway. Concurrently, the potential of J-1149 to impede the P2X7R/NLRP3 axis, curtail the infiltration of macrophages and neutrophils, and reduce liver fibrogenesis was also highlighted. These results demonstrated that J-1149 is a promising candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Si-Qi Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yu-Qing Meng
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
2
|
Saeed RA, Maqsood M, Saeed RA, Muzammil HS, Khan MI, Asghar L, Nisa SU, Rabail R, Aadil RM. Plant-based foods and hepatocellular carcinoma: A review on mechanistic understanding. Crit Rev Food Sci Nutr 2023; 63:11750-11783. [PMID: 35796706 DOI: 10.1080/10408398.2022.2095974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regardless of etiology, hepatocarcinogenesis is frequently preceded by a distinctive sequence of chronic necroinflammation, compensatory hepatic regeneration, development of hepatic fibrosis, and ultimately cirrhosis. The liver being central immunomodulators, closely maintains immunotolerance. Any dysregulation in this management of immunotolerance is a hallmark of chronic hepatic disease and hepatocellular carcinoma (HCC). Apart from other malignancies, hepatocellular carcinoma accounts for 90% of liver cancers. Several emerging evidences have recognized diet as lifestyle associated risk factor in HCC development. However, natural compounds have the potential to fight hepatoma aggressiveness via inhibition of cellular proliferation and modulation of oncogenic pathways. This review aimed to identify the several plant-based foods for their protective role in HCC prevention by understating the molecular mechanisms involved in inhibition of progression and proliferation of cancer. Information from relevant publications in which several plant-based foods demonstrated protective potential against HCC has been integrated as well as evaluated. For data integration, Science direct, Google scholar, and Scopus websites were used. Nutrition-based approaches in the deterrence of several cancers offer a substantial benefit to currently used medical therapies and should be implemented more often as an adjunct to first-line medical therapy. Furthermore, the inclusion of these plant-based foods (vegetables, fruits, herbs, and spices) may improve general health and decline cancer incidence.
Collapse
Affiliation(s)
- Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raafia Anam Saeed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Laiba Asghar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Un Nisa
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Taibi A, Lofft Z, Laytouni-Imbriaco B, Comelli EM. The role of intestinal microbiota and microRNAs in the anti-inflammatory effects of cranberry: from pre-clinical to clinical studies. Front Nutr 2023; 10:1092342. [PMID: 37287997 PMCID: PMC10242055 DOI: 10.3389/fnut.2023.1092342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Cranberries have known anti-inflammatory properties, which extend their benefits in the context of several chronic diseases. These benefits highly rely on the polyphenol profile of cranberries, one of few foods rich in A-type proanthocyanidin (PAC). A-type PAC comprises flavan-3-ol subunits with an additional interflavan ether bond in the conformational structure of the molecule, separating them from the more commonly found B-type PAC. PACs with a degree of polymerization higher than three are known to reach the colon intact, where they can be catabolyzed by the gut microbiota and biotransformed into lower molecular weight organic acids that are available for host absorption. Gut microbiota-derived metabolites have garnered much attention in the past decade as mediators of the health effects of parent compounds. Though, the mechanisms underlying this phenomenon remain underexplored. In this review, we highlight emerging evidence that postulates that polyphenols, including ones derived from cranberries, and their metabolites could exert anti-inflammatory effects by modulating host microRNAs. Our review first describes the chemical structure of cranberry PACs and a pathway for how they are biotransformed by the gut microbiota. We then provide a brief overview of the benefits of microbial metabolites of cranberry in the intestinal tract, at homeostasis and in inflammatory conditions. Finally, we discuss the role of microRNAs in intestinal health and in response to cranberry PAC and how they could be used as targets for the maintenance of intestinal homeostasis. Most of this research is pre-clinical and we recognize that conducting clinical trials in this context has been hampered by the lack of reliable biomarkers. Our review discusses the use of miRNA as biomarkers in this context.
Collapse
Affiliation(s)
- Amel Taibi
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Zoe Lofft
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Elena Maria Comelli
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Amer MA, Othman AI, El-Missiry MA, Farag AA, Amer ME. Proanthocyanidins attenuated liver damage and suppressed fibrosis in CCl4-treated rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91127-91138. [PMID: 35881285 PMCID: PMC9722827 DOI: 10.1007/s11356-022-22051-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 06/12/2023]
Abstract
Liver damage and fibrosis are serious health problems without effective treatment. Proanthocyanidins (PAs) are flavonoids with several biological effects. We investigated the potential anti-fibrotic effect of proanthocyanidins on carbon tetrachloride (CCl4)-induced liver injury and fibrosis. Liver fibrosis was induced by oral administration of CCl4 three times a week for 5 and 9 weeks. PAs were daily administered in a dose of 500 mg/kg bw. Animals were divided into five groups: control groups, olive oil-treated group, Pas-treated group, CCl4-treated animals, and PAs + CCl4-treated rats. CCl4 and PAs were administered by gavage. Administration of CCl4 caused a significant elevation in alanine aminotransferase and aspartate aminotransferase activities, the concentration of alpha-2-macroglobulin, and bilirubin concentration. In addition, the protein and apolipoprotein contents were significantly decreased in the serum of CCl4-treated rats. These results were accompanied by histopathological alterations and increased inflammation, apoptosis, and DNA damage. Treatment with PAs caused remarkable regression of fibrosis and alpha-2-macroglobulin with improvement in histological characteristics of the liver after 5 and 9 weeks of intoxication. PAs could also maintain redox balance, evidenced by the prevention of lipid peroxidation and mitigation of the decrease in antioxidants. Treatment of intoxicated rats with PAs resulted in a significant decline in pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α in serum. This is associated with a remarkable decrease in apoptosis of hepatic cells shown by decreased levels of Bax, caspase-3, and -9, with increased Bcl-2. The protective effect of PAs was also evident by protecting DNA integrity in the intoxicated rats. PAs suppressed hepatic fibrosis, improved liver function and structure via modulating the interdependence between oxidative stress, inflammation, apoptosis, and DNA integrity in CCl4-treated rats.
Collapse
Affiliation(s)
- Maher A Amer
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | | | - Aya A Farag
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Pulido-Hornedo NA, Ventura-Juárez J, Guevara-Lara F, González-Ponce HA, Sánchez-Alemán E, Buist-Homan M, Moshage H, Martínez-Saldaña MC. Hepatoprotective Effect of Opuntia robusta Fruit Biocomponents in a Rat Model of Thioacetamide-Induced Liver Fibrosis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2039. [PMID: 35956519 PMCID: PMC9370284 DOI: 10.3390/plants11152039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Liver fibrosis is a chronic disease associated with oxidative stress that has a great impact on the population mortality. Due to their antioxidant capacity, we evaluated the protective effect of Opuntia robusta fruit (Or) on liver fibrosis. A nutraceutical characterization of Or was performed and a model of fibrosis was induced with thioacetamide (TAA) in Wistar rats. Aminotransferases, reduced glutathione (GSH) and histopathology were evaluated. Or contained 436.5 ± 57 mg of Betacyanins equivalents/L., 793 mg of catechin equivalents (CAE)/100 g for flavonoids, 1118 mg of gallic acid equivalents (GAE)/100 g for total phenols, 141.14 mg/100 g for vitamin C and 429.9 μg/100 g for vitamin E. The antioxidant capacity of Or was: 2.27 mmol of Trolox® equivalents (TE)/L (DPPH), 62.2 ± 5.0 μmol TE/g (ABTS•+), 80.2 ± 11.7 μmol TE/g (FRAP), 247.9 ± 15.6 µmol TE/g (AAPH) and 15.0% of H2O2 elimination. An increase (p < 0.05) of aminotransferases and a decrease (p < 0.05) of hepatic GSH was observed in the TAA group compared to the control and the concomitant groups. Histopathology showed changes in the normal architecture of the liver treated with TAA compared to the concomitant treatments. Or contains bioactive components with antioxidant capacity, which can reduce fibrotic liver damage.
Collapse
Affiliation(s)
| | - Javier Ventura-Juárez
- Basic Sciences Center, Department of Morphology, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| | - Fidel Guevara-Lara
- Basic Sciences Center, Department of Chemistry, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| | | | - Esperanza Sánchez-Alemán
- Basic Sciences Center, Department of Morphology, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
- Unidad de Medicina Familiar 8, Instituto Mexicano del Seguro Social (IMSS), Aguascalientes 20180, Mexico
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center of Groningen, University of Groningen, 9713 Groningen, The Netherlands
- Department Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center of Groningen, University of Groningen, 9713 Groningen, The Netherlands
- Department Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 Groningen, The Netherlands
| | | |
Collapse
|
6
|
Zhang G, Jiang Y, Liu X, Deng Y, Wei B, Shi L. Lingonberry Anthocyanins Inhibit Hepatic Stellate Cell Activation and Liver Fibrosis via TGFβ/Smad/ERK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13546-13556. [PMID: 34735147 DOI: 10.1021/acs.jafc.1c05384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phytochemicals from lingonberry have rich pharmacological value and may play an essential role in treating liver diseases. We investigated the regulatory role of lingonberry anthocyanins (LA) on HSC activation in vitro and liver fibrogenesis in vivo. The viability of HSCs treated with LA was significantly reduced in a dose-dependent manner at the concentration of 25-100 μg/mL, in which the monomers of LA also reduced the proliferation of HSCs via IC50 assay. The inducer transforming growth factor β1 (TGFβ1) and the effector α-smooth muscle actin (α-SMA) of HSC activation were all decreased both in protein and RNA levels treated by LA. Moreover, LA alleviated CCl4-induced liver fibrosis in rats, reducing collagen aggregation and production and decreasing the hydroxyproline (HYP) and malondialdehyde (MDA) levels in the liver tissue. Moreover, LA reduced the indexes of serum liver fibrosis and reversed the index of serum liver function in CCl4-induced rats. Furthermore, the antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), in the liver tissue and serum were significantly increased upon treatment with LA. Importantly, LA promoted hepatic parenchymal cell proliferation and inhibited the expression of TGFβ/Smad/extracellular regulated protein kinase (ERK) signaling pathway-related genes. This study demonstrates the anti-liver fibrosis activity of LA and investigates its mechanism, which may provide a novel strategy for treating liver fibrosis using lingonberry.
Collapse
Affiliation(s)
- Guokun Zhang
- Changchun Sci-Tech University, Changchun, Jilin 130600, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin 130112, China
| | - Yunyao Jiang
- Changchun Sci-Tech University, Changchun, Jilin 130600, China
| | - Xin Liu
- Shenyang Ligong University, Shenyang, Liaoning 110159, China
| | - Yongyan Deng
- Changchun Sci-Tech University, Changchun, Jilin 130600, China
| | - Bin Wei
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, Jilin 130000, China
| | - Liyan Shi
- Changchun Sci-Tech University, Changchun, Jilin 130600, China
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, China
| |
Collapse
|
7
|
Hung WL, Hsiao YT, Chiou YS, Nagabhushanam K, Ho CT, Pan MH. Hepatoprotective effect of piceatannol against carbon tetrachloride-induced liver fibrosis in mice. Food Funct 2021; 12:11229-11240. [PMID: 34676843 DOI: 10.1039/d1fo02545g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Piceatannol (3,5,3',4'-trans-tetrahydroxystilbene) is a natural analog and a metabolite of resveratrol present in grapes and red wine. Previous studies have reported that piceatannol exerts a broad spectrum of health benefits including antioxidant, anti-inflammatory, chemopreventive, and neuroprotective effects. However, little is known about the hepatoprotective effect of piceatannol against toxin-induced liver fibrosis. Therefore, the objective of this study is to evaluate the protective effect of piceatannol in a mouse model of CCl4-induced hepatic fibrosis. Oral administration of piceatannol significantly improved the hepatic functions of CCl4-treated mice in both therapeutic and preventive models. Additionally, the immunohistochemical staining results revealed that collagen deposition in CCl4-injected mice was significantly reduced by treatment with piceatannol. Moreover, piceatannol remarkably suppressed the expressions of collagen I, α-smooth muscle protein (α-SMA), and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) induced by CCl4. The anti-fibrotic mechanism of piceatannol was associated with the regulation of the transforming growth factor-β (TGF-β)/Smad signaling pathway. Finally, piceatannol also profoundly alleviated CCl4-induced hepatic oxidative damage by elevating the level of glutathione and catalase activity. Altogether, our current findings suggest that piceatannol may serve as a bioactive agent that inhibits or alleviates toxic-induced fibroproliferative diseases, especially in the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Wei-Lun Hung
- School of Food Safety, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-Ting Hsiao
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Shiou Chiou
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|