1
|
Liu Q, Lin S, Liu Y, Liu K, Jia S, Wang S, Sun N. Allergenicity Reduction of Shrimp ( Penaeus vannamei) via Fucoidan-Mediated Covalent Modification: Insights from Epitope Modifying Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7482-7495. [PMID: 40073337 DOI: 10.1021/acs.jafc.5c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Covalent modification is an effective strategy for reducing allergenicity to individual allergens, but there are few studies on this strategy modifying specific amino acids within epitopes under the influence of food matrix. This study used fucoidan to covalently modify shrimp (Penaeus vannamei) and combined mass spectrometry and bioinformatics techniques to explore epitope modification. The results showed that lower concentrations (<2.50%) of fucoidan facilitated the covalent modification reaction and effectively modified amino acid sites in the loop regions of allergens, including lysine, asparagine, and methionine. In contrast, higher concentrations (>5.00%) of fucoidan hindered the reaction and modified amino acid sites in the helix regions of allergens, including asparagine, lysine, and methionine. The RBL-2H3 cells model confirmed that modification of hemocyanin epitopes was the main reason for reduced allergenicity. Overall, fucoidan-mediated covalent modification can effectively modify various allergenic epitopes in shrimp, which is a potential strategy to reduce shrimp allergenicity.
Collapse
Affiliation(s)
- Qiaozhen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Food, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Yao Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Kexin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuqi Jia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuya Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Food, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| |
Collapse
|
2
|
Hou T, Yan J, Li X, Niu L, Rao H, Hao J, Zhao D, Lui X, Fu W. Identification of digestion-resistant peptides in various processed peanut reveals their distinct allergenicity. Food Chem X 2024; 24:101876. [PMID: 39444440 PMCID: PMC11497363 DOI: 10.1016/j.fochx.2024.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Peanut protein is a significant food allergen that can trigger severe reactions. The allergenicity of peanut protein may be affected by the thermal processing method and matrices, and its anti-digestibility may also change accordingly. This study investigated how three heat treatment techniques affect the allergenicity and digestibility of peanut proteins and compared the differences in anti-digestive peptide segments by Mass spectrometry. Results showed that boiling and frying reduced sensitization, while roasting potentially increased it. After gastric digestion, allergenicity of Ara h 1 decreases due to breakdown of allergenic peptide segments. Hydrophobic regions of Ara h 1 where monomers interact resist degradation. Compared to boiling and frying, roasting can retain more allergenic peptides containing PGQFEDFF, YLQGFSRN, QEERGQRR, HRIFLAGDKD, and KDLAFPGSGE allergenic epitopes even after prolonged digestion. Meanwhile, digestion-resistant epitopes were affected by matrix and thermal treatments. These findings underscore the potential implications for food processing and allergy management strategies.
Collapse
Affiliation(s)
- Tianyu Hou
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Jiaxi Yan
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Xiaoluan Li
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Li Niu
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Huan Rao
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Dandan Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Xueqiang Lui
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Wenhui Fu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Pi X, Liu J, Ren S, Zhu L, Li B, Zhang B. Research progress in ultrasound and its assistance treatment to reduce food allergenicity: Mechanisms, influence factor, application and prospect. Int J Biol Macromol 2024; 278:134687. [PMID: 39137859 DOI: 10.1016/j.ijbiomac.2024.134687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Food allergy is a serious public health problem, which is mainly induced by food allergens (mainly allergenic proteins). Ultrasound can change protein structure, suggesting its potential to decrease food allergenicity. The review concluded the mechanism and influence factors of ultrasound to reduce food allergenicity. The effects of ultrasound alone on some major allergenic foods such as tree nuts, shellfish, fish, egg, soy, milk, and wheat were also discussed. Moreover, ultrasound pre- and post-treatments were combined with heating, glycation, germination, hydrolysis, fermentation, irradiation and polyphenol treatment for reducing food allergenicity were also evaluated. It was found that ultrasound induced structural changes even degradation of protein to reduce the allergenicity mainly due to cavitation effects. The reduction of allergenicity through ultrasound alone was affected by ultrasound power, time, frequency and food types, while, apart from these factors, it was affected by ultrasound order and the assisted technologies conditions during ultrasound-assisted technologies. Compared to ultrasound alone treatment, the ultrasound-assisted technology exhibited high efficiency of allergenicity reduction because ultrasound treatment caused protein unfolding to accelerate allergen modification of the assisted technologies for masking and disrupting more epitopes. Thus, ultrasound treatment, especially ultrasound-assisted technologies under appropriate conditions, was promising for producing hypoallergenic foods.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing 400715, China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China.
| | - Jiayuan Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Siyu Ren
- Westa College, Southwest University, Chongqing 400715, China
| | - Lilin Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Bowen Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
4
|
Pi X, Zhu L, Liu J, Zhang B. Effect of Thermal Processing on Food Allergenicity: Mechanisms, Application, Influence Factor, and Future Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20225-20240. [PMID: 39254084 DOI: 10.1021/acs.jafc.4c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Thermally processed foods are essential in the human diet, and their induced allergic reactions are also very common, seriously affecting human health. This review covers the effects of thermal processing on food allergenicity, involving boiling, water/oil bath heating, roasting, autoclaving, steaming, frying, microwave heating, ohmic heating, infrared heating, and radio frequency heating. It was found that thermal processing decreased the protein electrophoretic band intensity (except for infrared heating and radio frequency heating) responsible for destruction of linear epitopes and changed the protein structure responsible for the masking of linear/conformational epitopes or the destruction of conformational epitopes, thus decreasing food allergenicity. The outcome was related to thermal processing (e.g., temperature, time) and food (e.g., types, pH) condition. Of note, as for conventional thermal processing, it is necessary to control the generation of the advanced glycation end products in roasting/baking and frying, and the increase of structural flexibility in boiling and water/oil bath heating, autoclaving, and steaming must be controlled; otherwise, it might increase food allergenicity. As for novel thermal processing, the temperature nonuniformity of microwave and radio frequency heating, low penetration of infrared heating, and unwanted metal ion production of ohmic heating must be considered; otherwise, it might be the nonuniformity and low effect of allergenicity reduction and safety problems.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
- "Modern Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, P. R. China
| | - LiLin Zhu
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
| | - Jiayuan Liu
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
- "Modern Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, P. R. China
| |
Collapse
|
5
|
Jiang S, Huang Y, Tang X, Wang T, Li Q, Wang H, Meng X. Traditional cooking methods decreased the allergenicity of egg proteins. J Food Sci 2024; 89:3847-3857. [PMID: 38767860 DOI: 10.1111/1750-3841.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Egg allergy is one of the most common food allergies globally. This study aimed to assess the impact of four traditional cooking methods on the allergenicity of egg proteins using a comprehensive strategy, including simulated gastrointestinal digestion in vitro, serology experiments, a rat basophilic leukemia (RBL)-2H3 cell degranulation model, and a passive cutaneous anaphylaxis (PCA) mice model, and the structure changes were detected by circular dichroism (CD) spectra and ultraviolet (UV) spectra. The results showed that the processed egg proteins were more readily digested compared to raw egg proteins. The serological experiments revealed a significant reduction in immunoglobulin E binding of egg proteins after thermal treatments (p < 0.05), particularly after frying. Subsequently, the RBL-2H3 cell degranulation experiment demonstrated a marked decrease in the level of egg allergens-induced β-hexosaminidase release after cooking (p < 0.05). Moreover, the results from the PCA mice model indicated that the increase in vascular permeability was effectively relieved in the treated groups, especially in frying group (p < 0.05). Additionally, the α-helix and β-turn contents of processed egg proteins were significantly decreased (p < 0.05) compared with native egg proteins. The UV spectra findings showed that all cooking treatments caused significant alterations in the tertiary structure, and fluorescence analysis indicated that cooking decreased the surface hydrophobicity of egg proteins. In conclusion, four traditional cooking methods reduced the allergenicity of egg proteins, particularly frying, and this reduction was associated with structural changes that could contribute to the destruction or masking of epitopes of egg allergens. PRACTICAL APPLICATION: Egg allergy has a serious impact on public health, and there is no ideal treatment method at present. This study demonstrated that four traditional cooking methods (boiling, steaming, baking, and frying) reduced the allergenicity of egg proteins, especially frying, and the results will provide a basis for the development of hypoallergenic egg products.
Collapse
Affiliation(s)
- Songsong Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu, China
| | - Yutong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu, China
| | - Xinlei Tang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu, China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu, China
| | - Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu, China
| | - Hengpeng Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu, China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Yang S, Peng Z, Hardie WJ, Huang T, Tang H, Liu Z, Liu Q, Xiao M, Xiong T, Xie M. Screening of probiotic Lactobacillus to reduce peanut allergy and with potential anti-allergic activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2006-2014. [PMID: 37909354 DOI: 10.1002/jsfa.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Peanut is a significant source of nutrition and a valuable oilseed crop. It is also a serious allergy source, which poses a threat to 1.1% of the population. This study aimed to screen lactic acid bacteria (LAB) with the capacity to alleviate peanut allergenicity and exhibit anti-allergic properties. RESULT The results show that LAB can make use of substances in peanuts to reduce the pH of peanut milk from 6.603 to 3.593-4.500 by acid production and that it can utilize the protein in peanuts to reduce the allergenic content (especially Ara h 1) and improve biological activity in peanut pulp. The content of Ara h 1 peanut-sensitizing protein was reduced by 74.65% after fermentation. The protein extracted from fermented peanut pulp is more readily digestible by gastrointestinal juices. The inhibitory activity assay of hyaluronidase (an enzyme with strong correlation to allergy) increased from 46.65% to a maximum of 90.57% to reveal that LAB fermentation of peanut pulp exhibited a robust anti-allergic response. CONCLUSION The strains identified in this study exhibited the ability to mitigate peanut allergenicity partially and to possess potential anti-allergic properties. Lactobacillus plantarum P1 and Lactobacillus salivarius C24 were identified as the most promising strains and were selected for further research. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiyu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | | | - Tao Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Hui Tang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhuo Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Qiaozhen Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Lv G, Wang H, Wei X, Lu M, Yang W, Aalim H, Capanoglu E, Zou X, Battino M, Zhang D. Cooking-Induced Oxidation and Structural Changes in Chicken Protein: Their Impact on In Vitro Gastrointestinal Digestion and Intestinal Flora Fermentation Characteristics. Foods 2023; 12:4322. [PMID: 38231766 DOI: 10.3390/foods12234322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Meat digestion and intestinal flora fermentation characteristics are closely related to human dietary health. The present study investigated the effect of different cooking treatments, including boiling, roasting, microwaving, stir-frying, and deep-frying, on the oxidation of chicken protein as well as its structural and digestion characteristics. The results revealed that deep-fried and roasted chicken exhibited a relatively higher degree of protein oxidation, while that of boiled chicken was the lowest (p < 0.05). Both stir-frying and deep-frying led to a greater conversion of the α-helix structure of chicken protein into a β-sheet structure and resulted in lower protein gastrointestinal digestibility (p < 0.05), whereas roasted chicken exhibited moderate digestibility. Further, the impact of residual undigested chicken protein on the intestinal flora fermentation was assessed. During the fermentation process, roasted chicken generated the highest number of new intestinal flora species (49 species), exhibiting the highest Chao 1 index (356.20) and a relatively low Simpson index (0.88). Its relative abundance of Fusobacterium was the highest (33.33%), while the total production of six short-chain fatty acids was the lowest (50.76 mM). Although stir-fried and deep-fried chicken exhibited lower digestibility, their adverse impact on intestinal flora was not greater than that of roasted chicken. Therefore, roasting is the least recommended method for the daily cooking of chicken. The present work provides practical advice for choosing cooking methods for chicken in daily life, which is useful for human dietary health.
Collapse
Affiliation(s)
- Guanhua Lv
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengpeng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minmin Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenhao Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Halah Aalim
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| | - Xiaobo Zou
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Maurizio Battino
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Peanut Allergenicity: An Insight into Its Mitigation Using Thermomechanical Processing. Foods 2023; 12:foods12061253. [PMID: 36981179 PMCID: PMC10048206 DOI: 10.3390/foods12061253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Peanuts are the seeds of a legume crop grown for nuts and oil production. Peanut allergy has gained significant attention as a public health issue due to its increasing prevalence, high rate of sensitization, severity of the corresponding allergic symptoms, cross-reactivity with other food allergens, and lifelong persistence. Given the importance of peanuts in several sectors, and taking into consideration the criticality of their high allergic potential, strategies aiming at mitigating their allergenicity are urgently needed. In this regard, most of the processing methods used to treat peanuts are categorized as either thermal or thermomechanical techniques. The purpose of this review is to provide the reader with an updated outlook of the peanut’s allergens, their mechanisms of action, the processing methods as applied to whole peanuts, as well as a critical insight on their impact on the allergenicity. The methods discussed include boiling, roasting/baking, microwaving, ultrasonication, frying, and high-pressure steaming/autoclaving. Their effectiveness in alleviating the allergenicity, and their capacity in preserving the structural integrity of the treated peanuts, were thoroughly explored. Research data on this matter may open further perspectives for future relevant investigation ultimately aiming at producing hypoallergenic peanuts.
Collapse
|
9
|
Liu Q, Lin S, Sun N. How does food matrix components affect food allergies, food allergens and the detection of food allergens? A systematic review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|