1
|
Nie P, Hu L, Feng X, Xu H. Gut Microbiota Disorders and Metabolic Syndrome: Tales of a Crosstalk Process. Nutr Rev 2025; 83:908-924. [PMID: 39504479 DOI: 10.1093/nutrit/nuae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The microbiota in humans consists of trillions of microorganisms that are involved in the regulation of the gastrointestinal tract and immune and metabolic homeostasis. The gut microbiota (GM) has a prominent impact on the pathogenesis of metabolic syndrome (MetS). This process is reciprocal, constituting a crosstalk process between the GM and MetS. In this review, GM directly or indirectly inducing MetS via the host-microbial metabolic axis has been systematically reviewed. Additionally, the specifically altered GM in MetS are detailed in this review. Moreover, short-chain fatty acids (SCFAs), as unique gut microbial metabolites, have a remarkable effect on MetS, and the role of SCFAs in MetS-related diseases is highlighted to supplement the gaps in this area. Finally, the existing therapeutics are outlined, and the superiority and shortcomings of different therapeutic approaches are discussed, in hopes that this review can contribute to the development of potential treatment strategies.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation Co., Ltd, Nanchang University, Nanchang 330200, China
| |
Collapse
|
2
|
Abdelnour SA, Abdelaal M, Sindi RA, Alfattah MA, Khalil WA, Bahgat LB, Sheiha AM. Physio-metabolic response, immune function, epigenetic markers, and reproductive performance of rabbits under environmental stress: the mitigating role of boswellia essential oil nanoemulsion. BMC Vet Res 2025; 21:168. [PMID: 40087761 PMCID: PMC11909900 DOI: 10.1186/s12917-025-04587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/17/2025] Open
Abstract
Global warming poses a significant threat to reproductive health of rabbits. Sustainable nutritional strategies are crucial for ensuring rabbit production and maintaining food security under these challenging conditions. This study sought to assess the protective benefits of dietary boswellia essential oil nano-emulsion (BEON) against oxidative stress, immune dysregulation, ferroptosis, and organ damage in female rabbits exposed to severe thermal stress. A total of 120 female rabbits were divided into four groups of 30 rabbits each. The rabbits were fed a basal diet supplemented with 0 (BEON0), 0.25 (BEON0.25), 0.5 (BEON0.5), and 1.0 (BEON1.0) mL of BEON per kilogram of diet. Results demonstrated that the BEON1.0 group exhibited significantly higher levels of IgG, superoxide dismutase (SOD), and glutathione peroxidase (GPx), while the BEON0.25 group showed elevated levels of IgM, catalase, and total antioxidant capacity (TAC) (P < 0.05). All BEON treatments significantly reduced malondialdehyde (MDA) levels (P < 0.01). Serum levels of progesterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were significantly elevated in the BEON0.5 and BEON1.0 groups compared to the control group (P < 0.01). A significant decrease in adipokine levels was observed in all BEON-supplemented groups compared to the control group (P < 0.05). All BEON groups demonstrated a modulation of ferroptosis pathways, characterized by decreased heat shock protein 70 (HSP70) expression and upregulated expression of glutathione peroxidase 4 (GPX4) and cystine transporter solute carrier 7A11 (SLC7A11) in ovarian tissues (P < 0.01). Furthermore, DNA methyltransferase 1 (DNMT1) expression increased in a dose-dependent manner with increasing BEON supplementation. Histological analysis revealed an improvement in the architecture of the liver, uterine horns, and ovarian tissues in rabbits fed BEON. Integrating BEON at doses of 0.5-1.0 mL/kg diet significantly improved reproductive performance in stressed female rabbits. PCA and correlation analyses demonstrated a positive correlation between BEON supplementation and immune function, reproductive hormone levels, and antioxidant status, while a negative correlation was observed with MDA and adipokine concentrations in rabbit serum. In conclusion, BEON supplementation demonstrates promise as a sustainable nutritional strategy for the rabbit industry, particularly in mitigating the challenges posed by global warming.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mahmoud Abdelaal
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ramya Ahmad Sindi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed A Alfattah
- Department of Biology, College of Science, Jazan University, PO Box 114, 45142, Jazan, Saudi Arabia
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Laila B Bahgat
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa M Sheiha
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
3
|
Mohammed DM, Yang X, El-Messery TM, Jiang X, Zahran HA, Gebremeskal YH, Farouk A. Bioactive Moringa oleifera and Nigella sativa oils microcapsules alleviate high-fat-diet induced hepatic oxidative damage and inflammation in rats. FOOD BIOSCI 2025; 64:105873. [DOI: 10.1016/j.fbio.2025.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
|
4
|
Soliman TN, Karam-Allah AA, Abo-Zaid EM, Mohammed DM. Efficacy of nanoencapsulated Moringa oleifera L. seeds and Ocimum tenuiflorum L. leaves extracts incorporated in functional soft cheese on streptozotocin-induced diabetic rats. PHYTOMEDICINE PLUS 2024; 4:100598. [DOI: 10.1016/j.phyplu.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
|
5
|
Mohammed DM, Salem MB, Elzallat M, Hammam OA, Suliman AA. Moringa oleifera L. mediated zinc oxide nano-biofertilizer alleviates non-alcoholic steatohepatitis via modulating de novo lipogenesis pathway and miRNA-122 expression. FOOD BIOSCI 2024; 60:104286. [DOI: 10.1016/j.fbio.2024.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2024]
|
6
|
Mohammed DM, Abdelgawad MA, Ghoneim MM, Alhossan A, Al-Serwi RH, Farouk A. Impact of Some Natural and Artificial Sweeteners Consumption on Different Hormonal Levels and Inflammatory Cytokines in Male Rats: In Vivo and In Silico Studies. ACS OMEGA 2024; 9:30364-30380. [PMID: 39035958 PMCID: PMC11256323 DOI: 10.1021/acsomega.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Substituting sugar with noncaloric sweeteners prevents overweight and diabetes development. They come in two types: artificial, like aspartame and sucralose, and natural, such as sorbitol. This research aimed to assess the effects of sucrose and these sweeteners on nutritional parameters, hematological parameters, hormones, and anti- and pro-inflammatory cytokines in male rats. Thirty rats had been separated into five groups. The results showed the highest significant increase in body weight gain, total food intake, and feed efficiency noticed in the aspartame group followed by sucralose, sucrose, and sorbitol, respectively. In contrast to RBCs and platelets, all sweeteners significantly reduced the hemoglobin level, Hct %, and WBC count. The aspartame group showed the highest decline in glycoproteins, steroids, and T3, and T4 hormones and a dramatic elevation in thyroid stimulating hormone, eicosanoid, and amine hormones compared with the control group. A vigorous elevation in anti- and proinflammatory cytokine levels was observed in the aspartame group, followed by sucralose, sucrose, and sorbitol groups. Aspartame has the highest docking scores when studying the interactions of sweeteners and a target protein associated with hormones or cytokines using in silico molecular docking, with the best absorption, distribution, metabolism, elimination, and toxicity properties compared to the remaining sweeteners.
Collapse
Affiliation(s)
- Dina Mostafa Mohammed
- Nutrition
and Food Sciences Department, National Research
Centre, Dokki, Giza 12622, Egypt
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
| | - Abdulaziz Alhossan
- Department
of Clinical Pharmacy—College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rasha Hamed Al-Serwi
- Department
of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Farouk
- Flavour
and
Aroma Chemistry Department, National Research
Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
7
|
Abdoon ASS, Hegazy AM, Abdel-Azeem AS, Al-Atrash AM, Mohammed DM. The protective effects of some herbs on mitigating HFD-induced obesity via enhancing biochemical indicators and fertility in female rats. Heliyon 2024; 10:e30249. [PMID: 38726161 PMCID: PMC11078881 DOI: 10.1016/j.heliyon.2024.e30249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
The potential of plant-based diets and drugs to prevent and control obesity has been attributed to the presence of several biologically active phytochemicals. The study aimed to assess herb consumption's impact on alleviating the risks and hazards associated with obesity induced by a high-fat diet (HFD) and the promotion of fertility. Eighty rats were allocated into four distinct groups. Group 1 (G1) was provided with a basal diet and acted as the control group. Group 2 (G2) was provided with an HFD. Group 3 (G3) was provided with HFD supplemented with chia seeds and Hibiscus sabdariffa L. The fourth group of subjects was provided with HFD supplemented with Foeniculum vulgare (fennel) and Coriandrum sativum L. (coriander). The feeding session was sustained for 10 weeks, and the biochemical parameters were evaluated. The administration of Foeniculum vulgare (fennel) and Coriandrum sativum L. (coriander) (G4) resulted in a more significant reduction in all biochemical parameters compared to G3, which received a diet consisting of chia seeds and Hibiscus sabdariffa L. Additionally, the average number of embryonic lobes and the average number of offspring after birth were found to be considerably more significant in the normal control group (G1) and group (G4) compared to the HFD group (G2) and group (G3) (P < 0.01). Group 4 (G4) was administered a diet enriched with Foeniculum vulgare (fennel) and Coriandrum sativum L. (coriander), which demonstrated superior outcomes in many biochemical indicators and the promotion of fertility in obese female rats.
Collapse
Affiliation(s)
- Ahmed Sabry S. Abdoon
- Animal Reproduction, Veterinary Research division, National Research Centre, Dokki, Giza, Egypt
| | - Amany M. Hegazy
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, Egypt
| | - Amal S. Abdel-Azeem
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed M. Al-Atrash
- Medical Administration, Nuclear Materials Authority, Kattmya, Cairo, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
8
|
Shamseldean MSM, Attia MM, Korany RMS, Othman NA, Allam SFM. Comparative biotoxicity study for identifying better alternative insecticide especially green nano-emulsion which used as mosquitocides. BMC Vet Res 2024; 20:149. [PMID: 38643105 PMCID: PMC11031904 DOI: 10.1186/s12917-024-03992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/26/2024] [Indexed: 04/22/2024] Open
Abstract
This research work was planned to test biosafety of different nanomaterials on the different animals models. These nanoparticles were previously used as potential insecticides of mosquito larvae. The biosafety of these nanoproducts were evaluated on certain organs of non target animals that associated with mosquito breeding sites in Egypt. Animal organs such as the kidneys of rats, toads, and the fish's spleen were used as models to study the biological toxicity of these nanomaterials. After 30 days of the animals receiving the nanomaterials in their water supply, different cell mediated immune cells were assessed in these tissues. Both TNF-α and BAX immuno-expression were also used as immunohistochemical markers. Histopathology was conducted to detect the effect of the tested nanoproducts at the tissue level of the liver and kidneys of both the rats and toads. Green nanoemulsion of the lavender essential oil was relatively more effective, safe, and biodegradable to be used as insecticides against mosquito larvae than the metal-based nanomaterials.
Collapse
Affiliation(s)
- Muhammad S M Shamseldean
- Applied Center for Entomonematodes, Department of Zoology and Agricultural Nematology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Marwa M Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Reda M S Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Nehal A Othman
- Applied Center for Entomonematodes, Department of Zoology and Agricultural Nematology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Sally F M Allam
- Applied Center for Entomonematodes, Department of Zoology and Agricultural Nematology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
9
|
Sabry BA, Badr AN, Mohammed DM, Desoukey MA, Farouk A. Validating the protective role of orange and tangerine peel extracts foramending food safety against microorganisms' contamination using molecular docking. Heliyon 2024; 10:e27737. [PMID: 38509881 PMCID: PMC10950677 DOI: 10.1016/j.heliyon.2024.e27737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/02/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Latest studies indicated that agro-food wastes are considered renewable sources of bioactive compounds. This investigation aimed to utilize natural extracts of citrus peels as antimicrobial and anti-aflatoxigenic agents for food safety. The bioactivity of two citrus peels was assessed by total phenolic, flavonoids, and antioxidant activity. Nanoemulsions were manufactured using high-speed homogenization. The mean particle size of the nanoemulsions ranged from 29.41 to 66.41 nm with a polydispersity index of 0.11-0.16. The zeta potential values ranged from -14.27 to -26.74 mV, indicating stability between 81.44% and 99.26%. The orange peel extract showed the highest contents of total phenolic and flavonoids compared to the other extracts and nanoemulsions (39.54 mg GAE/g and 79.54 mg CE/100 g, respectively), which agreed with its potential antioxidant activity performed by DPPH free radical-scavenging and ABTS assays. Chlorogenic, caffeic, ferulic, and catechin were the dominant phenolic acids in the extracts and nanoemulsions, while quercitrin, rutin, and hesperidin were the most abundant flavonoids. Limonene was the major volatile component in both oils; however, it was reduced dramatically from 92.52% to 76.62% in orange peel oil and from 91.79 to 79.12% in tangerine peel oil. Consistent with the differences in phenolics, flavonoids, and volatiles between orange and tangerine peel extracts, the antibacterial properties of orange extracts had more potential than tangerine ones. Gram-positive bacteria were more affected by all the examined extracts than Gram-negative ones. The antifungal activity of orange extract and nanoemulsion on seven fungal strains from Aspergillus spp had more potential than tangerine extracts. Additionally, using a simulated media, the orange peel extract and its nanoemulsion had a more anti-aflatoxigenic influence. Molecular docking confirmed the high inhibitory action of flavonoids, especially hesperidin, on the polyketide synthase (-9.3 kcal/mol) and cytochrome P450 monooxygenase (-10.1 kcal/mol) key enzymes of the aflatoxin biosynthetic mechanism.
Collapse
Affiliation(s)
- Bassem A. Sabry
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Marwa A. Desoukey
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
10
|
Mostafa Mohammed D, El-Messery TM, Baranenko DA, Hashim MA, Tyutkov N, Marrez DA, Elmessery WM, El-Said MM. Effect of Spirulina maxima microcapsules to mitigate testicular toxicity induced by cadmium in rats: Optimization of in vitro release behavior in the milk beverage. J Funct Foods 2024; 112:105938. [DOI: 10.1016/j.jff.2023.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
|