1
|
Erfan S, Abka-Khajouei R, Keramat J, Hamdami N. Effects of isolation methods on physicochemical properties of defatted starch from the acorn (Quercus brantii). Int J Biol Macromol 2025; 301:140300. [PMID: 39863215 DOI: 10.1016/j.ijbiomac.2025.140300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
This study explores the innovative combined effects of alkaline isolation with ultrasound pretreatment on the physicochemical properties of acorn (Quercus brantii) starch. The optimal pH for maximizing the yield of alkaline-isolated acorn starch (AAS) was determined, followed by comparison with alkaline-isolated defatted acorn starch (ADAS), ultrasound-pretreated acorn starch (UAS), and ultrasound-pretreated defatted acorn starch (UDAS). The results demonstrated substantial improvements in yield and purity, with the highest yield (68.97 ± 0.16 %) achieved at pH 9. ADAS showed high purity, with protein and fat contents of 1.82 ± 0.07 % and 0.025 ± 0.02 %, respectively. UDAS exhibited superior swelling power, solubility, and turbidity, indicating enhanced functional properties. Scanning Electron Microscopy (SEM) revealed variations in granule sizes across treatments, from 12.42 μm (ADAS) to 10.72 μm (UDAS). X-ray diffraction analysis showed C-type patterns with crystallinity ranging from 31.25 % (ADAS) to 26 % (UAS). Thermal analysis demonstrated UDAS had the highest peak viscosity and lowest thermal parameters. Texture analysis indicated that AAS formed a softer gel, while ADAS displayed greater hardness and gumminess. These findings highlight the effectiveness of combining alkaline isolation with ultrasound pretreatment to improve acorn starch quality for sustainable applications in food and biotechnology.
Collapse
Affiliation(s)
- Sepideh Erfan
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Roya Abka-Khajouei
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Javad Keramat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Nasser Hamdami
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; ONIRIS - GEPEA (UMR CNRS 6144), Site de la Géraudière CS 82225, 44322, Nantes cedex 3, France
| |
Collapse
|
2
|
Kavya M, Krishnan R, Suvachan A, Sathyan S, Tozuka Y, Kadota K, Nisha P. The art and science of porous starch: understanding the preparation method and structure-function relationship. Crit Rev Food Sci Nutr 2024; 65:2880-2897. [PMID: 38768041 DOI: 10.1080/10408398.2024.2352548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Porous starch (PS), a modified form of starch with unique properties, is attracting substantial attention for its diverse advantages and applications. Its intricate porous structure, crystalline and amorphous characteristics, and hydrophilic-hydrophobic properties stem from pore formation via physical, chemical, enzymatic, and combined synergistic methods. Porous starch offers benefits like improved gelatinization temperature, water absorption, increased surface area, tunable crystallinity, and enhanced functional properties, making it appealing for diverse food industry applications. To optimize its properties, determining the parameters governing porous structure formation is crucial. Factors such as processing conditions, starch source, and modification methods substantially impact porosity and the overall characteristics of the material. Understanding and controlling these parameters allows customization for specific applications, from pharmaceutical drug delivery systems to enhancing texture and moisture retention in food products. To date, studies shedding light on how porosity formation can be fine-tuned for specific applications are fewer. This review critically assesses the existing reports on porous starch, focusing on how preparation methods affect porosity formation, thereby influencing the product's crystallinity/hydrophilic-hydrophobic nature and overall applicability.
Collapse
Affiliation(s)
- Mohan Kavya
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reshma Krishnan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
| | - Abhijith Suvachan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
| | - Sannya Sathyan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - P Nisha
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
4
|
Evaluation of the technological properties of rice starch modified by high hydrostatic pressure (HHP). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Hj Latip DN, Samsudin H, Utra U, Alias AK. Modification methods toward the production of porous starch: a review. Crit Rev Food Sci Nutr 2020; 61:2841-2862. [PMID: 32648775 DOI: 10.1080/10408398.2020.1789064] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Starch is a complex carbohydrate formed by the repeating units of glucose structure connected by the alpha-glycosidic linkages. Starch is classified according to their derivatives such as cereals, legumes, tubers, palms, fruits, and stems. For decades, native starch has been widely utilized in various applications such as a thickener, stabilizer, binder, and coating agent. However, starches need to be modified to enhance their properties and to make them more functional in a wide range of applications. Porous starch is a modified starch product which has attracted interest of late. It consists of abundant pores that are distributed on the granule surface without compromising the integrity of its granular structure. Porous starch can be produced either by enzymatic, chemical, and physical methods or a combination thereof. The type of starch and selection of the modification method highly influence the formation of pore structure. By carefully choosing a suitable starch and modification method, the desired morphology of porous starch can be produced and applied accordingly for its intended application. Innovations and technologies related to starch modification methods have evolved over the years in terms of the structure, properties and modification effects of different starch varieties. Therefore, this article reviews recent modification methods in developing porous starch from various origins.
Collapse
Affiliation(s)
- Dayang Norlaila Hj Latip
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Hayati Samsudin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Uthumporn Utra
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Abd Karim Alias
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
6
|
Balakrishna AK, Wazed MA, Farid M. A Review on the Effect of High Pressure Processing (HPP) on Gelatinization and Infusion of Nutrients. Molecules 2020; 25:E2369. [PMID: 32443759 PMCID: PMC7287844 DOI: 10.3390/molecules25102369] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/29/2022] Open
Abstract
High pressure processing (HPP) is a novel technology that involves subjecting foods to high hydrostatic pressures of the order of 100-600 MPa. This technology has been proven successful for inactivation of numerous microorganisms, spores and enzymes in foods, leading to increased shelf life. HPP is not limited to cold pasteurization, but has many other applications. The focus of this paper is to explore other applications of HPP, such as gelatinization, forced water absorption and infusion of nutrients. The use of high pressure in producing cold gelatinizing effects, imparting unique properties to food and improving food quality will be also discussed, highlighting the latest published studies and the innovative methods adopted.
Collapse
Affiliation(s)
| | | | - Mohammed Farid
- Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (A.K.B.); (M.A.W.)
| |
Collapse
|
7
|
Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Zhao AQ, Yu L, Yang M, Wang CJ, Wang MM, Bai X. Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.041] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|