1
|
Martins Strieder M, Lopes de Oliveira I, Sanchez Bragagnolo F, Lacerda Sanches V, Stein Pizani R, Mendes de Souza Mesquita L, Rostagno MA. Consistency of Phenolic Compounds in Plant Residues Parts: A Review of Primary Sources, Key Compounds, and Extraction Trends. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40300049 DOI: 10.1021/acs.jafc.5c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
A significant challenge in valorizing food waste is the accurate extraction and identification of metabolites, as the composition of phenolic compounds varies by plant species, part, growth conditions, and processing. This review examined phenolic compounds in plant residue groups (leaves/stalks, peels/husks, pulp/pomace, and seeds) to verify the predominance of specific compounds in the same plant groups, establishing a comprehensive database. This database may be helpful for future studies that seek sources of a given compound or develop solvents to extract phenolic compounds from a specific material. Moreover, the primary plant residues and trends in extracting and analyzing these compounds were reviewed. The predominance of specific compounds within these groups, such as luteolin in plant leaves and stalks, was observed. Most studies focus on extracts with the highest total phenolic content (TPC), limiting insights into how extraction variables affect the target compounds. Chromatographic methods vary according to sample type, column, and conditions, shifting toward reducing acetone/methanol use, shortening the analysis time, and integrating inline UV-vis detection. This perspective highlights plant residue parts rich in specific phenolics, contributing to more targeted, selective, and sustainable extraction methodologies.
Collapse
Affiliation(s)
- Monique Martins Strieder
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo Brazil
| | - Isadora Lopes de Oliveira
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo Brazil
| | - Felipe Sanchez Bragagnolo
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo Brazil
| | - Vitor Lacerda Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo Brazil
| | - Rodrigo Stein Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo Brazil
| | - Leonardo Mendes de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo Brazil
| | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo Brazil
| |
Collapse
|
2
|
Dashtian K, Kamalabadi M, Ghoorchian A, Ganjali MR, Rahimi-Nasrabadi M. Integrated supercritical fluid extraction of essential oils. J Chromatogr A 2024; 1733:465240. [PMID: 39154494 DOI: 10.1016/j.chroma.2024.465240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Supercritical fluid extraction (SFE) stands out as an incredibly efficient, environmentally conscious, and fast method for obtaining essential oils (EOs) from plants. These EOs are abundant in aromatic compounds that play a crucial role in various industries such as food, fragrances, cosmetics, perfumery, pharmaceuticals, and healthcare. While there is a wealth of existing literature on using supercritical fluids for extracting plant essential oils, there's still much to explore in terms of combining different techniques to enhance the SFE process. This comprehensive review presents a sophisticated framework that merges SFE with EO extraction methods. This inclusive categorization encompasses a range of methods, including the integration of pressurized liquid processes, ultrasound assistance, steam distillation integration, microfluidic techniques, enzyme integration, adsorbent facilitation, supercritical antisolvent treatments, molecular distillation, microwave assistance, milling process and mechanical pressing integration. Throughout this in-depth exploration, we not only elucidate these combined techniques but also engage in a thoughtful discussion about the challenges they entail and the array of opportunities they offer within the realm of SFE for EOs. By dissecting these complexities, our objective is to tackle the current challenges associated with enhancing SFE for commercial purposes. This endeavor will not only streamline the production of premium-grade essential oils with improved safety measures but also pave the way for novel applications in various fields.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Ghoorchian
- Department of Chemistry, Research Center for Development of Advanced Technologies, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mikšovsky P, Kornpointner C, Parandeh Z, Goessinger M, Bica-Schröder K, Halbwirth H. Enzyme-Assisted Supercritical Fluid Extraction of Flavonoids from Apple Pomace (Malus×domestica). CHEMSUSCHEM 2024; 17:e202301094. [PMID: 38084785 DOI: 10.1002/cssc.202301094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Indexed: 01/23/2024]
Abstract
Herein an enzyme-assisted supercritical fluid extraction (EA-SFE) was developed using the enzyme mix snailase to obtain flavonols and dihydrochalcones, subgroups of flavonoids, from globally abundant waste product apple pomace. Snailase, a commercially available mix of 20-30 enzymes, was successfully used to remove the sugar moieties from quercetin glycosides, kaempferol glycosides, phloridzin and 3-hydroxyphloridzin. The resulting flavonoid aglycones quercetin, kaempferol, phloretin and 3-hydroxyphloretin were extracted using supercritical carbon dioxide (scCO2) and minimum amounts of polar cosolvents. A sequential process of enzymatic hydrolysis and supercritical fluid extraction was developed, and the influence of the amount of snailase, pre-treatment of apple pomace, the time for enzymatic hydrolysis, the amount and type of cosolvent and the time for extraction, was studied. This revealed that even small amounts of snailase (0.25 %) provide a successful cleavage of sugar moieties up to 96 % after 2 h of enzymatic hydrolysis followed by supercritical fluid extraction with small amounts of methanol as cosolvent, leading up to 90 % of the total extraction yields after 1 h extraction time. Ultimately, a simultaneous process of EA-SFE successfully demonstrates the potential of snailase in scalable scCO2 extraction processes for dry and wet apple pomace with satisfactory enzyme activity, even under pressurized conditions.
Collapse
Affiliation(s)
- Philipp Mikšovsky
- TU Wien, Institute of Applied Synthetic Chemistry (E163), Getreidemarkt 9, 1060, Vienna, Austria
| | - Christoph Kornpointner
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering (E166), Getreidemarkt 9, 1060, Vienna, Austria
| | - Zahra Parandeh
- TU Wien, Institute of Applied Synthetic Chemistry (E163), Getreidemarkt 9, 1060, Vienna, Austria
| | - Manfred Goessinger
- Department of Fruit Processing, Federal College and Institute for Viticulture and Pomology, Wiener Strasse 74, 3400, Klosterneuburg, Austria
| | - Katharina Bica-Schröder
- TU Wien, Institute of Applied Synthetic Chemistry (E163), Getreidemarkt 9, 1060, Vienna, Austria
| | - Heidi Halbwirth
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering (E166), Getreidemarkt 9, 1060, Vienna, Austria
| |
Collapse
|
4
|
Marques LLM, Ribeiro FM, Nakamura CV, Simionato AS, Andrade G, Zielinski AAF, Carollo CA, Silva DBD, Oliveira AGD, Mello JCPD. Metabolomic profiling and correlations of supercritical extracts of guarana. Nat Prod Res 2024; 38:347-353. [PMID: 36028332 DOI: 10.1080/14786419.2022.2116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/03/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
Abstract
A previous optimization of supercritical extraction from guarana seeds was performed applying orthogonal array design (OA9(34)). The antioxidant and antimicrobial activities of these extracts, as well as metabolomic profiling and correlations from the compounds by statistical analysis were determined. Extracts 1 (40% ethanol; 20 min; 40 °C and 100 bar), 2 (40% methanol; 60 min; 40 °C and 200 bar), and 8 (40% methanol; 40 min; 60 °C and 100 bar) had the highest combined values of antioxidant capacity for the DPPH, FRAP, ABTS and xanthine oxidase system methods, and were identified by chemometric analysis. Similar chemical profiles of the extracts were obtained by LC-DAD-MS, and were identified: methyl-xanthine, (epi)catechin and dimers and trimers of type A and B proanthocyanidins. The heat map analysis showed positive correlation between antioxidant methods DPPH, FRAP and ABTS and with flavan-3-ols and proanthocyanidins. Extract 3 was active against Gram-negative and -positive bacteria and Candida tropicalis.
Collapse
Affiliation(s)
| | - Fabianne Martins Ribeiro
- Post-graduate Program in Biological Sciences, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Celso Vataru Nakamura
- Post-graduate Program in Pharmaceutical Sciences, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Ane Stefano Simionato
- Department of Microbiology, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Galdino Andrade
- Department of Microbiology, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, (UFMS), Campo Grande, Brazil
| | - Denise Brentan da Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, (UFMS), Campo Grande, Brazil
| | | | | |
Collapse
|
5
|
Nicolás García M, Borrás Enríquez A, González Escobar J, Calva Cruz O, Pérez Pérez V, Sánchez Becerril M. Phenolic Compounds in Agro-Industrial Waste of Mango Fruit: Impact on Health and Its Prebiotic Effect – a Review. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/159361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
6
|
New perspectives for mechanisms, ingredients, and their preparation for promoting the formation of beneficial bacterial biofilm. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Bogužas V, Skinulienė L, Butkevičienė LM, Steponavičienė V, Petrauskas E, Maršalkienė N. The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO 2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030431. [PMID: 35161410 PMCID: PMC8838759 DOI: 10.3390/plants11030431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/31/2023]
Abstract
One of the main goals of the 21st century's developing society is to produce the necessary amount of food while protecting the environment. Globally, particularly in Lithuania and other northern regions with similar climatic and soil conditions, there is a lack of data on the long-term effects of crop rotation under the current conditions of intensive farming and climate change. It has long been recognized that monocultures cause soil degradation compared to crop rotation. Research hypothesis: the long-term implementation of crop rotation makes a positive influence on the soil environment. The aim of our investigation was to compare the effects of a 50-year-long application of different crop rotations and monocultures on soil CO2 emissions, earthworms, and productivity of winter rye. Long-term stationary field experiments were established in 1966 at Vytautas Magnus University Experimental Station (54°53' N, 23°50' E). The study was conducted using intensive field rotation with row crops, green manure crop rotations, three-course rotation, and rye monoculture. Pre-crop had the largest impact on soil CO2 emissions, and more intensive soil CO2 emissions occurred at the beginning of winter rye growing season. Rye appeared not to be demanding in terms of pre-crops. However, its productivity decreased when grown in monoculture, and the optimal mineral fertilization remained lower than with crop rotation, but productivity remained stable.
Collapse
|
8
|
Wei MC, Wang CS, Liou RM, Yang YC. Development and validation of a green and sustainable procedure for the preparation of Perilla frutescens extracts. Food Chem 2022; 369:130929. [PMID: 34488132 DOI: 10.1016/j.foodchem.2021.130929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022]
Abstract
A procedure combining supercritical CO2 and ultrasound-assisted (USC-CO2) extraction was developed to obtain rosmarinic acid (RA)-rich extracts from Perilla frutescens. Based on extraction yields and efficiencies, USC-CO2 was considered the best extraction method among the methods studied for obtaining RA from P. frutescens. The constant extraction rate period and the falling extraction rate period for USC-CO2 extraction of P. frutescens were 45 and 96 min long, respectively, and they were significantly shorter than those of traditional SC-CO2 (TSC-CO2) extraction. Furthermore, mass transfer coefficients were derived using the Sovová model for the fluid and solid phases from USC-CO2 extraction, with values of 9.752 × 10-3 and 4.203 × 10-3 min-1, respectively, which were obviously higher than those for TSC-CO2 extraction. Consequently, the theoretical solubilities of RA in the supercritical solvents used in dynamic USC-CO2 and TSC-CO2 extractions were estimated and found to be well correlated using three density-based models.
Collapse
Affiliation(s)
- Ming-Chi Wei
- Department of Environmental Engineering & Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan; Section of Mathematics and Physics Science, Center for General Education, Air Force Academy, Kaohsiung 82047, Taiwan
| | - Chia-Sui Wang
- Department of Environmental Engineering & Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Rey-May Liou
- Department of Environmental Engineering & Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yu-Chiao Yang
- Department and Graduate Institute of Pharmacology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
9
|
Solov’ev VO, Kostenko MO, Zinov’eva IV, Voshkin AA, Zakhodyaeva YA. Supercritical Carbon Dioxide Extraction of Benzoic Acid, Caffeine, and Thiophene from Liquid Phases Based on PEG-400 and PEG-1500. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121080078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Valencia-Hernandez LJ, Wong-Paz JE, Ascacio-Valdés JA, Chávez-González ML, Contreras-Esquivel JC, Aguilar CN. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods 2021; 10:3152. [PMID: 34945704 PMCID: PMC8701411 DOI: 10.3390/foods10123152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Procyanidins are an important group of bioactive molecules known for their benefits to human health. These compounds are promising in the treatment of chronic metabolic diseases such as cancer, diabetes, and cardiovascular disease, as they prevent cell damage related to oxidative stress. It is necessary to study effective extraction methods for the recovery of these components. In this review, advances in the recovery of procyanidins from agro-industrial wastes are presented, which are obtained through ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, pressurized fluid extraction and subcritical water extraction. Current trends focus on the extraction of procyanidins from seeds, peels, pomaces, leaves and bark in agro-industrial wastes, which are extracted by ultrasound. Some techniques have been coupled with environmentally friendly techniques. There are few studies focused on the extraction and evaluation of biological activities of procyanidins. The identification and quantification of these compounds are the result of the study of the polyphenolic profile of plant sources. Antioxidant, antibiotic, and anti-inflammatory activity are presented as the biological properties of greatest interest. Agro-industrial wastes can be an economical and easily accessible source for the extraction of procyanidins.
Collapse
Affiliation(s)
- Leidy Johana Valencia-Hernandez
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Jorge E. Wong-Paz
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles C.P. 79010, SL, Mexico;
| | - Juan Alberto Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Juan Carlos Contreras-Esquivel
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| |
Collapse
|
11
|
Torres EAFS, Pinaffi-Langley ACDC, Figueira MDS, Cordeiro KS, Negrão LD, Soares MJ, da Silva CP, Alfino MCZ, Sampaio GR, de Camargo AC. Effects of the consumption of guarana on human health: A narrative review. Compr Rev Food Sci Food Saf 2021; 21:272-295. [PMID: 34755935 DOI: 10.1111/1541-4337.12862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Guarana (Paullinia cupana) is a plant from the Amazon region with cultural importance. Despite its early ancestral use by indigenous tribes, the first reports regarding the benefits of guarana consumption for human health were published in the 19th century. Since then, the use of guarana seed in powder and extract forms has been studied for its diverse effects on human health, such as stimulating, anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and anti-obesity effects. These effects are attributed to the high content of bioactive compounds found in guarana seeds, especially methylxanthines and flavonoids. In fact, the Brazilian Food Supplement Law has officially acknowledged guarana as a source of bioactive compounds. The number and diversity of studies focused on guarana and human health are increasing; thus, organizing and describing the available evidence on guarana and its applications is necessary to provide a framework for future studies. In this narrative review, we have organized the available information regarding guarana and its potential effects on human health. Guarana produces unique fruits with great potential for human health applications. However, the available evidence lacks human studies and mechanistic investigations. Future studies should be designed considering its applicability to human health, including intake levels and toxicity studies.
Collapse
Affiliation(s)
- Elizabeth A F S Torres
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Karina Silva Cordeiro
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Dias Negrão
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Maiara Jurema Soares
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Cintia Pereira da Silva
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile
| |
Collapse
|
12
|
Pazzini IAE, Melo AMD, Ribani RH. Bioactive potential, health benefits and application trends of Syzygium malaccense (Malay apple): A bibliometric review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Patil PD, Patil SP, Kelkar RK, Patil NP, Pise PV, Nadar SS. Enzyme-assisted supercritical fluid extraction: An integral approach to extract bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Santos KA, de Aguiar CM, da Silva EA, da Silva C. Evaluation of favela seed oil extraction with alternative solvents and pressurized-liquid ethanol. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Insights into the Supercritical CO2 Extraction of Perilla Oil and Its Theoretical Solubility. Processes (Basel) 2021. [DOI: 10.3390/pr9020239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the current research, the supercritical carbon dioxide (SCCO2) procedure was used to extract volatile oils from perilla leaves. The yields of the volatile oils and the four main constituents, limonene, perillaldehyde, β-caryophyllene, and (Z,E)-α-farnesene obtained by the SCCO2 procedure were 1.31-, 1.12-, 1.04-, 1.05-, and 1.07-fold higher than those obtained by the hydrodistillation technique, respectively. Furthermore, the duration and temperature of extraction were 40 min and 45 °C lower, respectively, in the former procedure compared to the latter technique. These advantages reveal that SCCO2 not only obtains high-quality extracts, but also meets the requirements of green environmental protection. The theoretical solubilities of the volatile oils acquired by the SCCO2 dynamic extraction at various temperatures and pressures were 1.385 × 10−3–8.971 × 10−3 (g oil/g CO2). Moreover, the three density-based models were well correlated with these theoretical solubility data, with a high coefficient of determination and low average absolute relative deviation.
Collapse
|
16
|
de Melo RR, de Lima EA, Persinoti GF, Vieira PS, de Sousa AS, Zanphorlin LM, de Giuseppe PO, Ruller R, Murakami MT. Identification of a cold-adapted and metal-stimulated β-1,4-glucanase with potential use in the extraction of bioactive compounds from plants. Int J Biol Macromol 2020; 166:190-199. [PMID: 33164774 DOI: 10.1016/j.ijbiomac.2020.10.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/05/2023]
Abstract
Cold-adapted endo-β-1,4-glucanases hold great potential for industrial processes requiring high activity at mild temperatures such as in food processing and extraction of bioactive compounds from plants. Here, we identified and explored the specificity, mode of action, kinetic behavior, molecular structure and biotechnological application of a novel endo-β-1,4-glucanase (XacCel8) from the phytopathogen Xanthomonas citri subsp. citri. This enzyme belongs to an uncharacterized phylogenetic branch of the glycoside hydrolase family 8 (GH8) and specifically cleaves internal β-1,4-linkages of cellulose and mixed-linkage β-glucans releasing short cello-oligosaccharides ranging from cellobiose to cellohexaose. XacCel8 acts in near-neutral pHs and in a broad temperature range (10-50 °C), which are distinguishing features from conventional thermophilic β-1,4-glucanases. Interestingly, XacCel8 was greatly stimulated by cobalt ions, which conferred higher conformational stability and boosted the enzyme turnover number. The potential application of XacCel8 was demonstrated in the caffeine extraction from guarana seeds, which improved the yield by 2.5 g/kg compared to the traditional hydroethanolic method (HEM), indicating to be an effective additive in this industrial process. Therefore, XacCel8 is a metal-stimulated and cold-adapted endo-β-1,4-glucanase that could be applied in a diverse range of biotechnological processes under mild conditions such as caffeine extraction from guarana seeds.
Collapse
Affiliation(s)
- Ricardo Rodrigues de Melo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Evandro Antonio de Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Plínio Salmazo Vieira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Amanda Silva de Sousa
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Letícia Maria Zanphorlin
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Roberto Ruller
- Microorganisms and General Biochemistry Laboratory, Institute of Bioscience (INBio), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| |
Collapse
|
17
|
Martínez-Ramos T, Benedito-Fort J, Watson NJ, Ruiz-López II, Che-Galicia G, Corona-Jiménez E. Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Santana ÁL, Zanini JA, Macedo GA. Dispersion‐assisted extraction of guarana processing wastes on the obtaining of polyphenols and alkaloids. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ádina L. Santana
- Bioprocesses Laboratory/DEPAN/FEA (School of Food Engineering)University of Campinas Campinas Brazil
- Food Innovation CenterUniversity of Nebraska‐Lincoln Lincoln Nebraska
| | - Júlia A. Zanini
- Bioprocesses Laboratory/DEPAN/FEA (School of Food Engineering)University of Campinas Campinas Brazil
| | - Gabriela A. Macedo
- Bioprocesses Laboratory/DEPAN/FEA (School of Food Engineering)University of Campinas Campinas Brazil
| |
Collapse
|
19
|
Fernandes ACF, Santana ÁL, Martins IM, Moreira DKT, Macedo JA, Macedo GA. Anti-glycation effect and the α-amylase, lipase, and α-glycosidase inhibition properties of a polyphenolic fraction derived from citrus wastes. Prep Biochem Biotechnol 2020; 50:794-802. [PMID: 32159444 DOI: 10.1080/10826068.2020.1737941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The advanced glycation end products (AGEs) constitute a wide variety of substances synthesized from interactions between amino groups of proteins and reducing sugars, which excess induces pathogenesis of chronic diseases. Brazil is the major producer of citrus, a low-cost source of hesperidin, which is a polyphenol recognized for its capacity to inhibit AGEs formation. This is the first work to evaluate the effects of a polyphenolic fraction derived from citrus wastes on the antiglycation and on the inhibition properties of digestive enzymes on the possibility to process these wastes in high value-added products. At concentrations of 10, 15 and 20 mg/mL inhibition of AGEs was higher than 60%. The extracts were able to inhibit by 76% the activity of pancreatic lipase and by 98% the activity of α-glucosidase. For the α-amylase the inhibition capacity was lower than 50%. Strong correlation was obtained among anti-glycation with polyphenolic content and antioxidant capacity.
Collapse
Affiliation(s)
- Annayara C F Fernandes
- Bioprocessos LES Laboratory, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Ádina L Santana
- Food Innovation Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | |
Collapse
|