1
|
Dinius A, Müller H, Kellhammer D, Deffur C, Schmideder S, Hammel JU, Krull R, Briesen H. 3D imaging and analysis to unveil the impact of microparticles on the pellet morphology of filamentous fungi. Biotechnol Bioeng 2024; 121:3128-3143. [PMID: 38943490 DOI: 10.1002/bit.28788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024]
Abstract
Controlling the morphology of filamentous fungi is crucial to improve the performance of fungal bioprocesses. Microparticle-enhanced cultivation (MPEC) increases productivity, most likely by changing the fungal morphology. However, due to a lack of appropriate methods, the exact impact of the added microparticles on the structural development of fungal pellets is mostly unexplored. In this study synchrotron radiation-based microcomputed tomography and three-dimensional (3D) image analysis were applied to unveil the detailed 3D incorporation of glass microparticles in nondestructed pellets of Aspergillus niger from MPEC. The developed method enabled the 3D analysis based on 375 pellets from various MPEC experiments. The total and locally resolved volume fractions of glass microparticles and hyphae were quantified for the first time. At increasing microparticle concentrations in the culture medium, pellets with lower hyphal fraction were obtained. However, the total volume of incorporated glass microparticles within the pellets did not necessarily increase. Furthermore, larger microparticles were less effective than smaller ones in reducing pellet density. However, the total volume of incorporated glass was larger for large microparticles. In addition, analysis of MPEC pellets from different times of cultivation indicated that spore agglomeration is decisive for the development of MPEC pellets. The developed 3D morphometric analysis method and the presented results will promote the general understanding and further development of MPEC for industrial application.
Collapse
Affiliation(s)
- Anna Dinius
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henri Müller
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Diana Kellhammer
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Charlotte Deffur
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Stefan Schmideder
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Jörg U Hammel
- Helmholtz-Zentrum hereon, Institute of Materials Physics, Geesthacht, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Heiko Briesen
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Thakur M, Kumar P, Rajput D, Yadav V, Dhaka N, Shukla R, Kumar Dubey K. Genome-guided approaches and evaluation of the strategies to influence bioprocessing assisted morphological engineering of Streptomyces cell factories. BIORESOURCE TECHNOLOGY 2023; 376:128836. [PMID: 36898554 DOI: 10.1016/j.biortech.2023.128836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Streptomyces genera serve as adaptable cell factories for secondary metabolites with various and distinctive chemical structures that are relevant to the pharmaceutical industry. Streptomyces' complex life cycle necessitated a variety of tactics to enhance metabolite production. Identification of metabolic pathways, secondary metabolite clusters, and their controls have all been accomplished using genomic methods. Besides this, bioprocess parameters were also optimized for the regulation of morphology. Kinase families were identified as key checkpoints in the metabolic manipulation (DivIVA, Scy, FilP, matAB, and AfsK) and morphology engineering of Streptomyces. This review illustrates the role of different physiological variables during fermentation in the bioeconomy coupled with genome-based molecular characterization of biomolecules responsible for secondary metabolite production at different developmental stages of the Streptomyces life cycle.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Punit Kumar
- Department of Morphology and Physiology, Karaganda Medical University, Karaganda 100008 Kazakhstan
| | - Deepanshi Rajput
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Namrata Dhaka
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India
| | - Rishikesh Shukla
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura- 281406, U.P., India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Efficient production of Antrodin C by microparticle-enhanced cultivation of medicinal mushroom Antrodia cinnamomea. J Biosci Bioeng 2023; 135:232-237. [PMID: 36693775 DOI: 10.1016/j.jbiosc.2022.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/23/2023]
Abstract
The microparticle-enhanced cultivation (MPEC) was used to enhance the production of Antrodin C by submerged fermentation of medicinal mushroom Antrodia cinnamomea. The crucial factors such as types, sizes, concentrations, and addition time of microparticles were optimized. The mechanism of MPEC on the membrane permeability and fluidity of A. cinnamomea and the expression of key genes in Antrodin C were investigated. When talc (18 μm, 2 g/L) was added into the fermentation liquid at 0 h, the promoting effect on Antrodin C was the best. The maximum yield of Antrodin C was 1615.7 mg/L, which was about 2.98 times of the control (541.7 mg/L). Talc slightly damaged the mycelia of A. cinnamomea, increased the release of intracellular constituents, and enhanced the index of unsaturated fatty acid. In addition, the key genes (IDI, E2.3.3.10, HMGCR, atoB) that might play an important role in the synthesis of the triquine-type sesquiterpene Antrodin C, were upregulated. In conclusion, talc increased the permeability and fluidity of cell membrane, upregulated the key genes and improved the biosynthesis process to enhance the yield of Antrodin C in the submerged fermentation of A. cinnamomea.
Collapse
|
4
|
Dinius A, Kozanecka ZJ, Hoffmann KP, Krull R. Intensification of bioprocesses with filamentous microorganisms. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Many industrial biotechnological processes use filamentous microorganisms to produce platform chemicals, proteins, enzymes and natural products. Product formation is directly linked to their cellular morphology ranging from dispersed mycelia over loose clumps to compact pellets. Therefore, the adjustment and control of the filamentous cellular morphology pose major challenges for bioprocess engineering. Depending on the filamentous strain and desired product, optimal morphological shapes for achieving high product concentrations vary. However, there are currently no overarching strain- or product-related correlations to improve process understanding of filamentous production systems. The present book chapter summarizes the extensive work conducted in recent years in the field of improving product formation and thus intensifying biotechnological processes with filamentous microorganisms. The goal is to provide prospective scientists with an extensive overview of this scientifically diverse, highly interesting field of study. In the course of this, multiple examples and ideas shall facilitate the combination of their acquired expertise with promising areas of future research. Therefore, this overview describes the interdependence between filamentous cellular morphology and product formation. Moreover, the currently most frequently used experimental techniques for morphological structure elucidation will be discussed in detail. Developed strategies of morphology engineering to increase product formation by tailoring and controlling cellular morphology and thus to intensify processes with filamentous microorganisms will be comprehensively presented and discussed.
Collapse
Affiliation(s)
- Anna Dinius
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Zuzanna J. Kozanecka
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Kevin P. Hoffmann
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Rainer Krull
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| |
Collapse
|
5
|
Dinius A, Schrinner K, Schrader M, Kozanecka ZJ, Brauns H, Klose L, Weiß H, Kwade A, Krull R. Morphology engineering for novel antibiotics: Effect of glass microparticles and soy lecithin on rebeccamycin production and cellular morphology of filamentous actinomycete Lentzea aerocolonigenes. Front Bioeng Biotechnol 2023; 11:1171055. [PMID: 37091334 PMCID: PMC10116066 DOI: 10.3389/fbioe.2023.1171055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Lentzea aerocolonigenes, as an actinomycete, is a natural producer of the antibiotic and antitumoral drug rebeccamycin. Due to the filamentous cellular morphology handling in cultivations is challenging; therefore, morphology engineering techniques are mandatory to enhance productivity. One promising approach described in the literature is the addition of mineral particles in the micrometer range to precisely adjust cellular morphology and the corresponding product synthesis (microparticle-enhanced cultivation, MPEC). Glass microparticles are introduced in this study as a novel supplementation type for bioprocess intensification in filamentous organisms. Several investigations were conducted to screen for an optimal particle setup, including particle size and concentration regarding their impact and effects on enhanced productivity, microparticle incorporation behavior into the biopellets, the viability of pellets, and morphological changes. Glass microparticles (10 g·L-1) with a median diameter of 7.9 µm, for instance, induced an up to fourfold increase in product synthesis accompanied by overall enhanced viability of biomass. Furthermore, structural elucidations showed that biopellets isolated from MPEC tend to have lower hyphal density than unsupplemented control pellets. In this context, oxygen microprofiling was conducted to better understand how internal structural changes interwind with oxygen supply into the pellets. Here, the resulting oxygen profiles are of a contradictive trend of steeper oxygen consumption with increasing glass microparticle supplementation. Eventually, MPEC was combined with another promising cultivation strategy, the supplementation of soy lecithin (7.5 g·L-1), to further increase the cultivation performance. A combination of both techniques in an optimized setup resulted in a rebeccamycin concentration of 213 mg·L-1 after 10 days of cultivation, the highest value published so far for microparticle-supplemented shake flask cultivations of L. aerocolonigenes.
Collapse
Affiliation(s)
- Anna Dinius
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kathrin Schrinner
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marcel Schrader
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Zuzanna Justyna Kozanecka
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henry Brauns
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Leon Klose
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hannah Weiß
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arno Kwade
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Rainer Krull,
| |
Collapse
|
6
|
Effect of Microparticles on Fungal Fermentation for Fermentation-Based Product Productions. Processes (Basel) 2022. [DOI: 10.3390/pr10122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ranging from simple food ingredients to complex pharmaceuticals, value-added products via microbial fermentation have many advantages over their chemically synthesized alternatives. Some of such advantages are environment-friendly production pathways, more specificity in the case of enzymes as compared to the chemical catalysts and reduction of harmful chemicals, such as heavy metals or strong acids and bases. Fungal fermentation systems include yeast and filamentous fungal cells based on cell morphology and culture conditions. However, filamentous fungal fermentation has gained attention in the past few decades because of the diversity of microbial products and robust production of some of the most value-added commodities. This type of fungal fermentation is usually carried out by solid-state fermentation. However, solid-state fermentation poses problems during the scale-up for industrial production. Therefore, submerged fermentation for value-added products is usually preferred for scaling-up purposes. The main problem with submerged fungal fermentation is the formation of complex mycelial clumps or pellets. The formation of such pellets increases the viscosity of the media and hinders the efficient transfer of oxygen and nutrient resources in the liquid phase. The cells at the center of the clump or pellet start to die because of a shortage of resources and, thus, productivity decreases substantially. To overcome this problem, various morphological engineering techniques are being researched. One approach is the use of microparticles. Microparticles are inert particles with various size ranges that are used in fermentation. These microparticles are shown to have positive effects, such as high enzyme productivity or smaller pellets with fungal fermentation. Therefore, this review provides a background about the types of microparticles and summarizes some of the recent studies with special emphasis on the fungal morphology changes and microparticle types along with the applications of microparticles in filamentous fungal fermentations.
Collapse
|
7
|
Germec M, Turhan I. Predictive modeling and sensitivity analysis to estimate the experimental data of inulinase fermentation by Aspergillus niger grown on sugar beet molasses-based medium optimized using Plackett-Burman Design. Biotechnol Appl Biochem 2022; 69:2399-2421. [PMID: 34847250 DOI: 10.1002/bab.2291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
The present work aimed to model Aspergillus niger inulinase fermentation performed in the medium using sigmoidal functions, validate the selected models using an independent set of the experimental values, and perform a sensitivity analysis of the selected models. Based on the results, the selected models were Stannard and Fitzhugh models for substrate consumption (R2 = 0.9976 and 0.9974, respectively), Huang model for inulinase production (R2 = 0.9967), Weibull model for invertase-type production (R2 = 0.9963), and modified logistic model for invertase-type activity/inulinase activity ratio (R2 = 0.9292) with high R2 values (>0.90). Kinetics predicted by particularly selected models mentioned above fit well with the experimental kinetic results. Besides, validation of the selected models with an independent set of the experimental data indicated that they gave satisfying results with high R2 values for consumption and production (R2 > 0.90). Sensitivity analysis of the selected models showed that the yielded R2 values (R2 ≥ 0.9775) were in good agreement with those obtained from the selected models. Consequently, A. niger inulinase fermentation was successfully modeled and the selected models were successfully validated with an independent set of the observed data. Besides, the sensitivity analysis also verified the reliability of the selected models. Those models can serve as universal equations to describe the A. niger inulinase fermentation.
Collapse
Affiliation(s)
- Mustafa Germec
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
8
|
Laible AR, Dinius A, Schrader M, Krull R, Kwade A, Briesen H, Schmideder S. Effects and interactions of metal oxides in microparticle-enhanced cultivation of filamentous microorganisms. Eng Life Sci 2022; 22:725-743. [PMID: 36514528 PMCID: PMC9731605 DOI: 10.1002/elsc.202100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Filamentous microorganisms are used as molecular factories in industrial biotechnology. In 2007, a new approach to improve productivity in submerged cultivation was introduced: microparticle-enhanced cultivation (MPEC). Since then, numerous studies have investigated the influence of microparticles on the cultivation. Most studies considered MPEC a morphology engineering approach, in which altered morphology results in increased productivity. But sometimes similar morphological changes lead to decreased productivity, suggesting that this hypothesis is not a sufficient explanation for the effects of microparticles. Effects of surface chemistry on particles were paid little attention, as particles were often considered chemically-inert and bioinert. However, metal oxide particles strongly interact with their environment. This review links morphological, physical, and chemical properties of microparticles with effects on culture broth, filamentous morphology, and molecular biology. More precisely, surface chemistry effects of metal oxide particles lead to ion leaching, adsorption of enzymes, and generation of reactive oxygen species. Therefore, microparticles interfere with gene regulation, metabolism, and activity of enzymes. To enhance the understanding of microparticle-based morphology engineering, further interactions between particles and cells are elaborated. The presented description of phenomena occurring in MPEC eases the targeted choice of microparticles, and thus, contributes to improving the productivity of microbial cultivation technology.
Collapse
Affiliation(s)
- Andreas Reiner Laible
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| | - Anna Dinius
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Marcel Schrader
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Rainer Krull
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Arno Kwade
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Heiko Briesen
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| | - Stefan Schmideder
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| |
Collapse
|
9
|
Timoumi A, Nguyen TC, Le T, Kraiem H, Cescut J, Anne-Archard D, Gorret N, Molina-Jouve C, To KA, Fillaudeau L. Comparison of methods to explore the morphology and granulometry of biological particles with complex shapes: Interpretation and limitations. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Germec M, Turhan I. Kinetic modeling and sensitivity analysis of inulinase production in large-scale stirred tank bioreactor with sugar beet molasses-based medium. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Yatmaz E. Growth control agent for filamentous fungi: FDM based 3D printed cubes for suspended Aspergillus sojae fermentation. Enzyme Microb Technol 2021; 150:109867. [PMID: 34489026 DOI: 10.1016/j.enzmictec.2021.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
The main problem for submerged fermentation of filamentous fungi is the nutrition limitation with high cell density or cell leakage by the uncontrollable hyphae, clusters, or pellets. There are several techniques such as microparticle, immobilization, pH shifting, substrate limitation etc. for controlling filamentous fungi growth on submerged fermentation. In this research, FDM (Fused Deposition Modelling) based 3D printed cubes is used for growth control agent of recombinant Aspergillus sojae for the first time. Lattice structure sizes, number of cubes and pH were chosen to be main factors of fermentation in order to study the combine effect of the factors on A. sojae fermentation. The results revealed that specific activity values are improved from 2045.96 U/mg (the highest control activity) to 3291.67 U/mg with lower pellet sizes and controllable growth. FDM based 3D printed cubes was successfully controlled the recombinant Aspergillus sojae fermentation and enhanced β-mannanase production. In addition, this research was also showed that FDM based 3D printed cubes also have the potential to be used as immobilization materials like SLS based 3D printed products in further research.
Collapse
Affiliation(s)
- Ercan Yatmaz
- Göynük Culinary Arts Vocational School, Akdeniz University, Kemer, Antalya, 07994, Turkey; Faculty of Engineering, Department of Food Engineering, Akdeniz University, Konyaaltı, Antalya, 07070, Turkey.
| |
Collapse
|
12
|
Erkan SB, Ozcan A, Yilmazer C, Gurler HN, Karahalil E, Germec M, Yatmaz E, Kucukcetin A, Turhan I. The effects of mannanase activity on viscosity in different gums. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.14820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Selime Benemir Erkan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ali Ozcan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Cansu Yilmazer
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Hilal Nur Gurler
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ercan Karahalil
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ercan Yatmaz
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
- Göynük Culinary Arts Vocational School Akdeniz University Antalya Turkey
| | - Ahmet Kucukcetin
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Irfan Turhan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
13
|
Tesche S, Krull R. An image analysis method to quantify heterogeneous filamentous biomass based on pixel intensity values – Interrelation of macro- and micro-morphology in Actinomadura namibiensis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Yilmazer C, Gürler HN, Erkan SB, Ozcan A, Hosta Yavuz G, Germec M, Yatmaz E, Turhan I. Optimization of mannooligosaccharides production from different hydrocolloids via response surface methodology using a recombinant
Aspergillus sojae
β‐mannanase produced in the microparticle‐enhanced large‐scale stirred tank bioreactor. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cansu Yilmazer
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Hilal Nur Gürler
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Selime Benemir Erkan
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ali Ozcan
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Gozde Hosta Yavuz
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
- Department of Nutrition and Dietetics Faculty of Health Sciences Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ercan Yatmaz
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Irfan Turhan
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
15
|
Gürler HN, Erkan SB, Ozcan A, Yılmazer C, Karahalil E, Germec M, Yatmaz E, Ogel ZB, Turhan I. Scale‐up processing with different microparticle agent for β‐mannanase production in a large‐scale stirred tank bioreactor. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hilal Nur Gürler
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Selime Benemir Erkan
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ali Ozcan
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Cansu Yılmazer
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ercan Karahalil
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ercan Yatmaz
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
- Göynük Culinary Arts Vocational School Akdeniz University Antalya Turkey
| | - Zumrut Begum Ogel
- Department of Food Engineering, Faculty of Engineering and Architecture Konya Food and Agriculture University Konya Turkey
| | - Irfan Turhan
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
16
|
Kowalska A, Boruta T, Bizukojć M. Performance of fungal microparticle-enhanced cultivations in stirred tank bioreactors depends on species and number of process stages. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Erkan SB, Basmak S, Ozcan A, Yılmazer C, Gürler HN, Yavuz G, Germec M, Yatmaz E, Turhan I. Mannooligosaccharide production by β‐mannanase enzyme application from coffee extract. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Selin Basmak
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ali Ozcan
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Cansu Yılmazer
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Hilal Nur Gürler
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Gözde Yavuz
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ercan Yatmaz
- Department of Food Engineering Akdeniz University Antalya Turkey
- Göynük Culinary Arts Vocational School Akdeniz University Antalya Turkey
| | - Irfan Turhan
- Department of Food Engineering Akdeniz University Antalya Turkey
| |
Collapse
|