1
|
Lee D, Lee D, Lee S, Park HJ, Han KN, Choi SJ, Kim YH, Kim J. Electric Field-Assisted Agglomeration of Trace Nanoparticle Impurities for Ultrahigh Purity Chemicals. JACS AU 2024; 4:1031-1038. [PMID: 38559726 PMCID: PMC10976593 DOI: 10.1021/jacsau.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
With the advancement of semiconductor manufacturing technology, the effects of trace impurities in industrial chemicals have grown significantly. In industrial processes, conventional purification methods, such as filtration and distillation, have reached their limits for removing nanoparticles from aqueous and acidic solutions. Especially, silicon and silicate are two fundamental byproducts in semiconductor fabrication processes. Assembly and subsequent removal of these materials at the nanoparticle level have been confronted with significant challenges. Therefore, it is imperative to develop technologies to effectively control and remove these impurities for next-generation manufacturing processes. In this study, we explored the use of electric field-assisted assembly to agglomerate silicate and silicon nanoparticles in industry-standard aqueous and acidic solutions. By applying an alternating current electric field, we induced dipole moments in the nanoparticles, which led to their agglomeration. Notably, nanoparticles smaller than 4 nm grew into significantly larger ones, with submicroparticle sizes exceeding 87 nm for silicate and reaching 130 nm for silicon. Through systematic analysis of the size distribution changes, we identified optimal agglomeration times of 10 min for silicate and 20 min for silicon, revealing effective agglomeration within the frequency range of 1-1000 kHz. The agglomerated particles were stable for 5 days. Our electric field-assisted approach to obtain assembled nanoparticles that can be subsequently removed by conventional purification processes holds promise for enhancing future microfabrication processes, such as semiconductor manufacturing, potentially improving the manufacturing yield and uniformity by reducing the number of trace particles that can act as defective sites.
Collapse
Affiliation(s)
- Dongryul Lee
- Department
of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Donggyu Lee
- Department
of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sungjune Lee
- Material
Technology Team, Samsung Electronics, Hwaseong-si, Gyeonggi-do 18448, South Korea
| | - Hee Jeong Park
- Material
Technology Team, Samsung Electronics, Hwaseong-si, Gyeonggi-do 18448, South Korea
| | - Kuk Nam Han
- Material
Technology Team, Samsung Electronics, Hwaseong-si, Gyeonggi-do 18448, South Korea
| | - Sam-Jong Choi
- Material
Technology Team, Samsung Electronics, Hwaseong-si, Gyeonggi-do 18448, South Korea
| | - Yun Ho Kim
- Material
Technology Team, Samsung Electronics, Hwaseong-si, Gyeonggi-do 18448, South Korea
| | - Jihyun Kim
- Department
of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
2
|
Gu S, Zhu Q, Zhou Y, Wan J, Liu L, Zhou Y, Chen D, Huang Y, Chen L, Zhong X. Effect of Ultrasound Combined with Glycerol-Mediated Low-Sodium Curing on the Quality and Protein Structure of Pork Tenderloin. Foods 2022; 11:3798. [PMID: 36496606 PMCID: PMC9737799 DOI: 10.3390/foods11233798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Considering the hazards of high salt intake and the current status of research on low-sodium meat products, this study was to analyze the effect of ultrasound combined with glycerol-mediated low-sodium salt curing on the quality of pork tenderloin by analyzing the salt content, water activity (aw), cooking loss, and texture. The results of scanning electron microscope (SEM) analysis, Raman spectroscopy, ultraviolet fluorescence, and surface hydrophobicity were proposed to reveal the mechanism of the effect of combined ultrasound and glycerol-mediated low sodium salt curing on the quality characteristics of pork tenderloin. The results showed that the co-mediated curing could reduce salt content, aw, and cooking loss (p < 0.05), improve texture and enhance product quality. Compared with the control group, the co-mediated curing increased the solubility of the myofibrillar protein, improved the surface hydrophobicity of the protein, increased the content of reactive sulfhydryl groups (p < 0.05), and changed the protein structure. The SEM results showed that the products treated using a co-mediated curing process had a more detailed and uniform pore distribution. These findings provide new insights into the quality of ultrasonic-treated and glycerol-mediated low-salt cured meat products.
Collapse
Affiliation(s)
- Sha Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Jing Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yeling Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Dan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yanpei Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Li Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Xiaolin Zhong
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| |
Collapse
|
3
|
Liu L, Zhou Y, Wan J, Zhu Q, Bi S, Zhou Y, Gu S, Chen D, Huang Y, Hu B. Mechanism of polyhydroxy alcohol-mediated curing on moisture migration of minced pork tenderloin: On the basis of molecular docking. Food Chem X 2022; 15:100401. [PMID: 36211757 PMCID: PMC9532708 DOI: 10.1016/j.fochx.2022.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxy alcohols affect salt diffusion and moisture migration. Polyhydroxy alcohols cause the water to migrate out to reduce aw in meat. Polyhydroxy alcohols retard salt diffusion into the meat by forming a viscose barrier. Polyhydroxy alcohols can prevent meat structural damage by binding to myosin.
This study investigated the mechanism of glycerol, xylitol, and sorbitol-mediated curing of cured minced pork tenderloin. The use of polyhydroxy alcohol during mediated curing significantly reduced the salt content (p < 0.01) and water activity (aw) of the cured pork tenderloin. Low-field nuclear magnetic resonance (LFNMR) revealed that 1 % glycerol, 1 % xylitol, 1 % sorbitol, and 10 % glycerol-mediated curing decreased water mobility, and improved water holding capacity (WHC), and produced uniform dense microstructures. Raman spectroscopy and molecular docking indicated that polyhydroxy alcohols formed hydrogen bonds with myosin, as well as hydrogen bonds with free water molecules to convert free water into bound water to reduce aw, and altered the hydrophobic environment of myosin surface to reduce structural damage caused by high salt content. In conclusion, using polyhydroxy alcohol to mediate curing can effectively reduce the salt content of cured meat and provide a theoretical basis for its application in the cured meat industry.
Collapse
|
4
|
Biswas R, Hossain MA, Zzaman W. Thin layer modeling of drying kinetics, rehydration kinetics and color changes of osmotic pre-treated pineapple (Ananas comosus) slices during drying: Development of a mechanistic model for mass transfer. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Alexi N, Sfyra K, Basdeki E, Athanasopoulou E, Spanou A, Chryssolouris M, Tsironi T. Raw and Cooked Quality of Gilthead Seabream Fillets (Sparus aurata, L.) after Mild Processing via Osmotic Dehydration for Shelf Life Extension. Foods 2022; 11:foods11142017. [PMID: 35885260 PMCID: PMC9318255 DOI: 10.3390/foods11142017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The current study aimed to explore the effects of mild processing for shelf-life extension on the raw an-d cooked quality of gilthead seabream fillets stored at 2 °C. Control and Treated (via osmotic dehydration) fillets were sampled at the beginning (D1), middle (D5) and end (D7) of commercial shelf life. The raw quality was evaluated via the quality index method (QIM), microbial measurements and for D1 through tetrad discrimination testing. The cooked quality was evaluated for the same samples via sensory descriptive analyses with a trained panel. The tetrad results indicated similar characteristics between treatments for raw fillets on D1 and a 29% shelf-life extension for Treated fillets vs. the Control ones, defined by Quality Index Method and microbial measurements. The raw quality was reflected in the cooked quality of the tissue, with the Treated fillets exhibiting less intense spoilage-related sensory attributes as well as enhanced or retained freshness-related attributes throughout storage, when compared to the Control ones. A range of treatment induced sensory characteristics, partly associated to Maillard reactions, were developed in the Treated fillets. Overall, the treatment affected positively both the raw and cooked quality of the fillet, showing promising results as a shelf-life extension method for fish fillet preservation.
Collapse
Affiliation(s)
- Niki Alexi
- Food Quality Perception and Society Science Team, iSENSE Lab, Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark;
- Correspondence:
| | - Konstantina Sfyra
- Food Quality Perception and Society Science Team, iSENSE Lab, Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark;
| | - Eugenia Basdeki
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.B.); (E.A.); (A.S.); (T.T.)
- SuSea BV, High Tech Campus 1, 5656 AE Eindhoven, The Netherlands;
| | - Evmorfia Athanasopoulou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.B.); (E.A.); (A.S.); (T.T.)
| | - Aikaterini Spanou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.B.); (E.A.); (A.S.); (T.T.)
| | | | - Theofania Tsironi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.B.); (E.A.); (A.S.); (T.T.)
| |
Collapse
|
6
|
Serpa-Fajardo JG, Hernández-Ramos EJ, Fernández-Lambert G, Sandoval-Herazo LC, Andrade-Pizarro RD. Post-industrial context of cassava bagasse and trend of studies towards a sustainable industry: A scoping review - Part I. F1000Res 2022; 11:562. [PMID: 36606117 PMCID: PMC9772581 DOI: 10.12688/f1000research.110429.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 01/13/2023] Open
Abstract
Background: The cassava starch industry is recognized as a source of negative externalities caused by the agroindustrial waste 'cassava bagasse'. Even though options for bioconversion of cassava bagasse have been introduced, it is also true that hundreds of tons of this waste are produced annually with the consequent negative environmental impact. This agroindustrial context highlights the need for further research in technological proposals aimed at lowering the water contained in cassava bagasse. Methods: We report a scoping review of studies from 2010-2021 that mention the uses of cassava bagasse, as well as the technological options that have become effective for drying fruits and vegetables. The method used for selecting articles was based on the Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) method. Articles selected were taken from the databases of ScienceDirect, Google Scholar, Scopus and Springer. Results : This review highlights fruit and vegetable osmotic dehydration and drying studies assisted by the combination of emerging technologies of osmotic pressure, ultrasound, and electrical pulses. Studies that take advantage of cassava bagasse have focused on biotechnological products, animal and human food industry, and development of biofilms and biomaterials. Conclusions: In this review, we found 60 studies out of 124 that show the advantages of the residual components of cassava bagasse for the development of new products. These studies do not mention any potential use of bagasse fiber for post-industrial purposes, leaving this end products' final use/disposal unaddressed. A viable solution is osmotic dehydration and drying assisted with electrical pulse and ultrasound that have been shown to improve the drying efficiency of fruits, vegetables and tubers. This greatly improves the drying efficiency of agro-industrial residues such as husks and bagasse, which in turn, directly impacts its post-industrial use.
Collapse
Affiliation(s)
- José Gabriel Serpa-Fajardo
- Tecnológico Nacional de México-Campus Misantla, Misantla, Veracruz, 93821, Mexico
- Departamento de Ingeniería Agroindustrial, Universidad de Sucre, Sincelejo, Sucre, 700001, Colombia
| | | | | | | | - Ricardo David Andrade-Pizarro
- Facultad de Ingenierías, Departamento de Ingeniería de Alimentos, Universidad de Córdoba, Montería, Córdoba, 230002, Colombia
| |
Collapse
|
7
|
Zhang Z, Yu J, Cheng P, Wang S, Hang F, Li K, Xie C, Shi C. Effect of Different Process Parameters and Ultrasonic Treatment During Solid Osmotic Dehydration of Jasmine for Extraction of Flavoured Syrup on the Mass Transfer Kinetics and Quality Attributes. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Xiao-Hui G, Jing W, Ye-Ling Z, Ying Z, Qiu-Jin Z, Ling-Gao L, Dan C, Yan-Pei H, Sha G, Ming-Ming L. Mediated curing strategy: An overview of salt reduction for dry-cured meat products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Gong Xiao-Hui
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Wan Jing
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
- Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang, Guizhou, China
| | - Zhou Ye-Ling
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Zhou Ying
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Zhu Qiu-Jin
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
- Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang, Guizhou, China
| | - Liu Ling-Gao
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Chen Dan
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Huang Yan-Pei
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Gu Sha
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Li Ming-Ming
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Li J, Shi J, Wang T, Huang X, Zou X, Li Z, Zhang D, Zhang W, Xu Y. Effects of pulsed electric field pretreatment on mass transfer kinetics of pickled lotus root (Nelumbo nucifera Gaertn.). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Combined Effect of Impregnation with an Origanum vulgare Infusion and Osmotic Treatment on the Shelf Life and Quality of Chilled Chicken Fillets. Molecules 2021; 26:molecules26092727. [PMID: 34066449 PMCID: PMC8124957 DOI: 10.3390/molecules26092727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
The scope of this work is the study of a combined process including a dipping step into an oregano (Origanum vulgare ssp. hirtum) infusion (OV) followed by osmotic treatment of chicken fillets at 15 °C. Chicken fillets were immersed in an osmotic solution consisting of 40% glycerol and 5% NaCl with (OV/OD) and without (OD) prior antioxidant enrichment in a hypotonic oregano solution. A comparative shelf life study of all the samples (untreated, OD and OV/OD treated) was then conducted at 4 °C in order to assess the impact of this process on the quality and shelf life of chilled chicken fillets. Microbial growth, lipid oxidation and color/texture changes were measured throughout the chilled storage period. Rates of microbial growth of pretreated fillets were significantly reduced, mainly as a result of water activity decrease (OD step). Rancidity development closely related to off odors and sensory rejection was greatly inhibited in treated fillets owing to both inhibitory factors (OD and OV), with water-soluble phenols (OV step) exhibiting the main antioxidant effect. Shelf life of treated chicken fillets exhibited a more than three-fold increase as compared to the untreated samples based on both chemical and microbial spoilage indices, maintaining a positive and pleasant sensory profile throughout the storage period examined.
Collapse
|
11
|
Liu C, Grimi N, Bals O, Lebovka N, Vorobiev E. Effects of pulsed electric fields and preliminary vacuum drying on freezing assisted processes in potato tissue. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Zhang Z, Zhang B, Yang R, Zhao W. Recent Developments in the Preservation of Raw Fresh Food by Pulsed Electric Field. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1860083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhenna Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Bin Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
13
|
Application of hurdle technology for the shelf life extension of European eel (Anguilla anguilla) fillets. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Osmodehydrofreezing: An Integrated Process for Food Preservation during Frozen Storage. Foods 2020; 9:foods9081042. [PMID: 32748856 PMCID: PMC7466345 DOI: 10.3390/foods9081042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Osmodehydrofreezing (ODF), a combined preservation process where osmotic dehydration is applied prior to freezing, achieves several advantages, especially in plant tissues, sensitive to freezing. OD pre-treatment can lead to the selective impregnation of solutes with special characteristics that reduce the freezing time and improve the quality and stability of frozen foods. ODF research has extensively focused on the effect of the osmotic process conditions (e.g., temperature, duration/composition/concentration of the hypertonic solution) on the properties of the osmodehydrofrozen tissue. A number of complimentary treatments (e.g., vacuum/pulsed vacuum, pulsed electric fields, high pressure, ultrasound) that accelerate mass transfer phenomena have been also investigated. Less research has been reported with regards the benefits of ODF during the subsequent storage of products, in comparison with their conventionally frozen counterparts. It is important to critically review, via a holistic approach, all parameters involved during the first (osmotic dehydration), second (freezing process), and third stage (storage at subfreezing temperatures) when assessing the advantages of the ODF integrated process. Mathematical modeling of the improved food quality and stability of ODF products during storage in the cold chain, as a function of the main process variables, is presented as a quantitative tool for optimal ODF process design.
Collapse
|