1
|
Nasir NAHA, Yuswan MH, Shah NNAK, Abd Rashed A, Kadota K, Yusof YA. Evaluation of Physicochemical Properties of a Hydrocolloid-Based Functional Food Fortified with Caulerpa lentillifera: A D-Optimal Design Approach. Gels 2023; 9:531. [PMID: 37504409 PMCID: PMC10379153 DOI: 10.3390/gels9070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
This study introduced a D-optimal design mixture to assess the physicochemical properties of a hydrocolloid-based functional food fortified with C. lentillifera. The combination incorporated vital jelly constituents, including extract (10-15%), sweeteners (20-29%), gelling agents (k-carrageenan and locust bean gum (LBG)), and preservatives (0-0.05%). The dependent variables were pH, Total Soluble Solid (TSS) value, and moisture content (MS). By employing the D-optimal design approach, a quadratic polynomial model was developed, demonstrating strong correlations with the experimental data with coefficient determinations (R2) of 0.9941, 0.9907, and 0.9989 for pH, TSS, and MS, respectively. Based on the D-optimal design, the study identified the optimum combination of significant factors with a desirability of 0.917, comprising 14.35% extract, 23.00% sucrose, 21.70% fructose, 26.00% k-carrageenan, 13.00% LBG, 1.95% CaCl2, and 0% methylparaben. The percentage of residual standard error (RSE) was less than 5%, indicating the reliability of the developed model. Furthermore, color analysis revealed significant differences among the jellies (p < 0.05). HPLC analysis demonstrated that the total sugar content in the fortified jellies was 28% lower compared to commercial jelly. Meanwhile, the bitterness level according to e-tongue showed a reduction of up to 90.5% when compared to the extract. These findings provide a valuable benchmark for the development of functional food products, ensuring their quality, safety, and extended shelf-life.
Collapse
Affiliation(s)
- Nor Atikah Husna Ahmad Nasir
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Inforport, Serdang 43400, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, Kampus Arau, Arau 02600, Perlis, Malaysia
| | - Mohd Hafis Yuswan
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Inforport, Serdang 43400, Selangor, Malaysia
| | - Nor Nadiah Abd Karim Shah
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Inforport, Serdang 43400, Selangor, Malaysia
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Aswir Abd Rashed
- Nutrition Unit, Institute for Medical Research, National Institutes of Health, No. 1, Jalan, Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Selangor, Malaysia
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yus Aniza Yusof
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Inforport, Serdang 43400, Selangor, Malaysia
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Mechanical Activation by Ball Milling as a Strategy to Prepare Highly Soluble Pharmaceutical Formulations in the Form of Co-Amorphous, Co-Crystals, or Polymorphs. Pharmaceutics 2022; 14:pharmaceutics14102003. [PMID: 36297439 PMCID: PMC9607342 DOI: 10.3390/pharmaceutics14102003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Almost half of orally administered active pharmaceutical ingredients (APIs) have low solubility, which affects their bioavailability. In the last two decades, several alternatives have been proposed to modify the crystalline structure of APIs to improve their solubility; these strategies consist of inducing supramolecular structural changes in the active pharmaceutical ingredients, such as the amorphization and preparation of co-crystals or polymorphs. Since many APIs are thermosensitive, non-thermal emerging alternative techniques, such as mechanical activation by milling, have become increasingly common as a preparation method for drug formulations. This review summarizes the recent research in preparing pharmaceutical formulations (co-amorphous, co-crystals, and polymorphs) through ball milling to enhance the physicochemical properties of active pharmaceutical ingredients. This report includes detailed experimental milling conditions (instrumentation, temperature, time, solvent, etc.), as well as solubility, bioavailability, structural, and thermal stability data. The results and description of characterization techniques to determine the structural modifications resulting from transforming a pure crystalline API into a co-crystal, polymorph, or co-amorphous system are presented. Additionally, the characterization methodologies and results of intermolecular interactions induced by mechanical activation are discussed to explain the properties of the pharmaceutical formulations obtained after the ball milling process.
Collapse
|
3
|
Minode M, Kadota K, Kawabata D, Yoshida M, Shirakawa Y. Enhancement in dissolution behavior and antioxidant capacity of quercetin with amino acids following radical formation via mechanochemical technique. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|