1
|
de Oliveira Filho JG, Duarte LGR, Bonfim DO, Salgaço MK, Mattoso LHC, Egea MB. Shaping the Future of Functional Foods: Using 3D Printing for the Encapsulation and Development of New Probiotic Foods. Probiotics Antimicrob Proteins 2025; 17:1295-1307. [PMID: 39419915 DOI: 10.1007/s12602-024-10382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Consumers have been demanding foods that, besides providing nutrition, bring some health benefits, known as functional foods. The insertion of probiotics in foods is a strategy for developing functional foods. Still, it has been a challenge because these matrices have different pHs and undergo different process temperatures and times that can reduce the viability of these microorganisms. In this sense, encapsulation using 3D printing emerges to protect probiotic microorganisms and ensure that they reach the intestine viable and carry out the expected beneficial action. Thus, this review evaluates the current advancements in 3D printing to encapsulate and develop novel probiotic foods. Research has shown that 3D printing effectively encapsulates probiotic microorganisms, preserving their viability throughout the gastrointestinal tract. Studies have proven the effectiveness of 3D printing encapsulation in protecting probiotics during processing, storage, and digestion. Innovative formulations for 3D bioprinted products with probiotics, such as food structures based on cereals, mashed potatoes, and cream, have been developed. Producing products with shelf life and combining applications of phytochemicals and probiotics aims to improve personalized nutrition, textural characteristics, and sensory attributes of the foods produced by this emerging approach. Therefore, 3D printing of foods with probiotics has the potential to create new products that meet this demand.
Collapse
Affiliation(s)
| | | | - Diego Oliveira Bonfim
- Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Mateus Kawata Salgaço
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| |
Collapse
|
2
|
Zadeike D, Gaizauskaite Z, Basinskiene L, Zvirdauskiene R, Cizeikiene D. Exploring Calcium Alginate-Based Gels for Encapsulation of Lacticaseibacillus paracasei to Enhance Stability in Functional Breadmaking. Gels 2024; 10:641. [PMID: 39451294 PMCID: PMC11506860 DOI: 10.3390/gels10100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
This study focuses on evaluating the efficiency of acid-tolerant Lacticaseibacillus paracasei bacteria encapsulated in an alginate-based gel matrix during repeated sourdough fermentation cycles, as well as their preservation during storage and throughout baking at high temperature. A double-coating procedure was applied, involving the encapsulation of bacterial cells in calcium alginate, which was further coated with chitosan. The encapsulation efficiency (EE) did not show significant difference between alginate and alginate-chitosan (97.97 and 96.71%, respectively). The higher number of L. paracasei bacteria was preserved in double-coated microbeads, with survivability rates of 89.51% and 96.90% in wet and dried microbeads, respectively. Encapsulated bacteria demonstrated effective fermentation ability, while double gel-coated cells exhibited slower acidification during sourdough fermentation, maintaining higher efficiency in the second fermentation cycle. The addition of freeze-dried, alginate-based gel-encapsulated bacteria (2-4%, w/w flour) significantly (p < 0.05) improved bread quality and extended its shelf life. A double-layer coating (alginate-chitosan) can be introduced as an innovative strategy for regulating the release of lactic acid bacteria and optimizing fermentation processes. Powdered alginate or alginate-chitosan gel-based L. paracasei microcapsules, at appropriate concentrations, can be used in the production of baked goods with acceptable quality and sensory properties, achieving a lactic acid bacteria count of approximately 106 CFU/g in the crumb, thereby meeting the standard criteria for probiotic bakery products.
Collapse
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technolgy, Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania; (Z.G.); (L.B.); (R.Z.); (D.C.)
| | | | | | | | | |
Collapse
|
3
|
Agriopoulou S, Smaoui S, Chaari M, Varzakas T, Can Karaca A, Jafari SM. Encapsulation of Probiotics within Double/Multiple Layer Beads/Carriers: A Concise Review. Molecules 2024; 29:2431. [PMID: 38893306 PMCID: PMC11173482 DOI: 10.3390/molecules29112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
An increased demand for natural products nowadays most specifically probiotics (PROs) is evident since it comes in conjunction with beneficial health effects for consumers. In this regard, it is well known that encapsulation could positively affect the PROs' viability throughout food manufacturing and long-term storage. This paper aims to analyze and review various double/multilayer strategies for encapsulation of PROs. Double-layer encapsulation of PROs by electrohydrodynamic atomization or electrospraying technology has been reported along with layer-by-layer assembly and water-in-oil-in-water (W1/O/W2) double emulsions to produce multilayer PROs-loaded carriers. Finally, their applications in food products are presented. The resistance and viability of loaded PROs to mechanical damage, during gastrointestinal transit and shelf life of these trapping systems, are also described. The PROs encapsulation in double- and multiple-layer coatings combined with other technologies can be examined to increase the opportunities for new functional products with amended functionalities opening a novel horizon in food technology.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.S.); (M.C.)
| | - Moufida Chaari
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.S.); (M.C.)
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Turkey;
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 14158-45371, Iran
| |
Collapse
|
4
|
Yang X, Wang C, Wang Q, Zhang Z, Nie W, Shang L. Armored probiotics for oral delivery. SMART MEDICINE 2023; 2:e20230019. [PMID: 39188298 PMCID: PMC11235677 DOI: 10.1002/smmd.20230019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 08/28/2024]
Abstract
As a kind of intestinal flora regulator, probiotics show great potential in the treatment of many diseases. However, orally delivered probiotics are often vulnerable to unfriendly gastrointestinal environments, resulting in a low survival rate and decreased therapeutic efficacy. Decorating or encapsulating probiotics with functional biomaterials has become a facile yet useful strategy, and probiotics can be given different functions by wearing different armors. This review systematically discusses the challenges faced by oral probiotics and the research progress of armored probiotics delivery systems. We focus on how various functional armors help probiotics overcome different obstacles and achieve efficient delivery. We also introduce the applications of armor probiotics in disease treatment and analyze the future trends of developing advanced probiotics-based therapies.
Collapse
Affiliation(s)
- Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiao Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Weimin Nie
- Key Laboratory of Smart Drug DeliverySchool of PharmacyFudan UniversityShanghaiChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2185. [PMID: 37570503 PMCID: PMC10421492 DOI: 10.3390/nano13152185] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.
Collapse
Affiliation(s)
- Qiqi Sun
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
| | - Sheng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Yi Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
6
|
Cikrikci Erunsal S. Evaluation of multicomplex systems on pomegranate concentrate loaded alginate hydrogels by low-field NMR relaxometry: physicochemical characterization and controlled release study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1960-1969. [PMID: 37206427 PMCID: PMC10188785 DOI: 10.1007/s13197-023-05730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
Alginate (ALG) and various gums are potential biomaterials to be employed in hydrogel designs for both food and biomedical applications. This study evaluated a multicomplex design by combining food grade polymers to examine their polymer-polymer interactions and design an oral delivery system for pomegranate concentrate (PC). ALG was replaced with gum tragacanth (GT), xanthan (XN) and their equal combinations (GT:XN) at 50% ratio in hydrogel fabrication. In addition to CaCI2 in binding solution, honey (H) and chitosan (CH) were also used during physical crosslinking. Relaxation time constants in NMR indicated poor ability of GT for water entrapment especially in the presence of honey (S2H). They also confirmed FTIR results indicating similar trends. Strong negative correlations were observed between T2 and texture results. GT replacement of ALG especially in the use of single CaCI2 (S2) promoted higher PC release up to 80% in digestive media compared to XN substitution (S3). This study promoted use of LF NMR as an indicator for polymer mixture characterization in complex gels. ALG based gels could be modified by replacing ALG with different kinds of gums and with use of different binding solutions to regulate target compound release in food and pharmaceutical fields. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05730-2.
Collapse
Affiliation(s)
- Sevil Cikrikci Erunsal
- Department of Food Engineering, Konya Food and Agriculture University, 42080 Konya, Turkey
| |
Collapse
|
7
|
Yuan Y, Yin M, Zhai Q, Chen M. The encapsulation strategy to improve the survival of probiotics for food application: From rough multicellular to single-cell surface engineering and microbial mediation. Crit Rev Food Sci Nutr 2022; 64:2794-2810. [PMID: 36168909 DOI: 10.1080/10408398.2022.2126818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The application of probiotics is limited by the loss of survival due to food processing, storage, and gastrointestinal tract. Encapsulation is a key technology for overcoming these challenges. The review focuses on the latest progress in probiotic encapsulation since 2020, especially precision engineering on microbial surfaces and microbial-mediated role. Currently, the encapsulation materials include polysaccharides and proteins, followed by lipids, which is a traditional mainstream trend, while novel plant extracts and polyphenols are on the rise. Other natural materials and processing by-products are also involved. The encapsulation types are divided into rough multicellular encapsulation, precise single-cell encapsulation, and microbial-mediated encapsulation. Recent emerging techniques include cryomilling, 3D printing, spray-drying with a three-fluid coaxial nozzle, and microfluidic. Encapsulated probiotics applied in food is an upward trend in which "classic probiotic foods" (yogurt, cheese, butter, chocolate, etc.) are dominated, supplemented by "novel probiotic foods" (tea, peanut butter, and various dry-based foods). Future efforts mainly include the effect of novel encapsulation materials on probiotics in the gut, encapsulation strategy oriented by microbial enthusiasm and precise encapsulation, development of novel techniques that consider both cost and efficiency, and co-encapsulation of multiple strains. In conclusion, encapsulation provides a strong impetus for the food application of probiotics.
Collapse
Affiliation(s)
- Yongkai Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Ming Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Yuan Y, Yin M, Chen L, Liu F, Chen M, Zhong F. Effect of calcium ions on the freeze-drying survival of probiotic encapsulated in sodium alginate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Characteristics of Probiotic Preparations and Their Applications. Foods 2022; 11:foods11162472. [PMID: 36010472 PMCID: PMC9407510 DOI: 10.3390/foods11162472] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022] Open
Abstract
The probiotics market is one of the fastest growing segments of the food industry as there is growing scientific evidence of the positive health effects of probiotics on consumers. Currently, there are various forms of probiotic products and they can be categorized according to dosage form and the site of action. To increase the effectiveness of probiotic preparations, they need to be specifically designed so they can target different sites, such as the oral, upper respiratory or gastrointestinal tracts. Here we review the characteristics of different dosage forms of probiotics and discuss methods to improve their bioavailability in detail, in the hope that this article will provide a reference for the development of probiotic products.
Collapse
|
10
|
Tan LL, Mahotra M, Chan SY, Loo SCJ. In situ alginate crosslinking during spray-drying of lactobacilli probiotics promotes gastrointestinal-targeted delivery. Carbohydr Polym 2022; 286:119279. [DOI: 10.1016/j.carbpol.2022.119279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/29/2022]
|
11
|
Exploring the integrity of cellular membrane and resistance to digestive juices of dehydrated lactic acid bacteria as influenced by drying kinetics. Food Res Int 2022; 157:111395. [DOI: 10.1016/j.foodres.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
|
12
|
Gao Y, Wang X, Xue C, Wei Z. Latest developments in food-grade delivery systems for probiotics: A systematic review. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34748451 DOI: 10.1080/10408398.2021.2001640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tremendous progress in the inseparable relationships between probiotics and human health has enabled advances in probiotic functional foods. To ensure the vitality of sensitive probiotics against multiple harsh conditions, rising food-grade delivery systems for probiotics have been developed. This review gives a summary of recently reported delivery vehicles for probiotics, analyzes their respective merits and drawbacks and makes comparisons among them. Subsequently, the applications and future prospects are discussed. According to the types of encapsulating probiotics, food-grade delivery systems for probiotics can be classified into "silkworm cocoons" and "spider webs", which are put forward in this paper. The former, which surrounds the inner probiotics with the outer protective layers, includes particles, emulsions, beads, hybrid electrospun nanofibers and microcapsules. While hydrogels and bigels belong to the latter, which protects probiotics with the aid of network structures. The future prospects include preferable viability and stability of probiotics, co-delivery systems, targeted gut release of probiotics, delivery of multiple strains, more scientific experimental verification and more diversified food products, which will enlighten further studies on delivering probiotics for human health. Taken together, delivery vehicles for probiotics are-or will soon be-in the field of food science, with further applications under development.
Collapse
Affiliation(s)
- Yuxing Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Hirsch E, Pantea E, Vass P, Domján J, Molnár M, Suhajda Á, Andersen SK, Vigh T, Verreck G, Marosi GJ, Nagy ZK. Probiotic bacteria stabilized in orally dissolving nanofibers prepared by high-speed electrospinning. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|