1
|
Ahmad M, Yousaf M. Co-conversion of CO 2 and refractory organics into bioplastics through a stable biocarrier. WATER RESEARCH 2025; 280:123519. [PMID: 40147307 DOI: 10.1016/j.watres.2025.123519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
An attractive solution to traditional plastics is scaling up the microbial system to produce bioplastics like polyhydroxyalkanoates (PHAs). Herein, we developed a dynamic microbial ecosystem on porous biocarrier for conversion of refractory organics to bioplastics. biocarriers of 25 mm sized were packed in a 5 L bioreactor and operated for 200 days, to achieve stable performance for commercial applications. Reaching to bioreactor stability, microbial ecosystem utilized quinoline (5.2 kg/m3/day) for carbon & nitrogen metabolism, phenol (4.5 kg/m3/day) to trigger synthesis of PHAs, pyridines (4.2 kg/m3/day) to manufacture hydroxy fatty acid polyesters, NH4+(7.2 kg/m3/day) to regulate symbiosis, NO3/NO2 (1.2 kg/m3/day) to serve as mediators and electron acceptors. On 200th day, bioplastic production reached to 76.8 (kg/m3/day) with stable pollutants degradation of 70.3 (kg/m3/day). Purity of the bioplastics remained quite high (average 90 %) after 100 days of bioreactor operation. Interestingly, PHAs synthesis was triggered (31-581 g/day) with increased CO2 fixation from 45 to 594 (mol/h/g protein), due to the growth of CO2 assimilators. The developed biocarriers could be directly poured into the secondary tank of the existing wastewater treatment plants (WWTPs), which will not only produce bioplastics but also boost treatment efficiency and resource recovery potential of WWTPs.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Hoxha L, Taherzadeh MJ, Marangon M. Sustainable repurposing of grape marc: Potential for bio-based innovations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114871. [PMID: 40359698 DOI: 10.1016/j.wasman.2025.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
There is increasing interest in repurposing by-products and residues from agricultural and agri-food industries, supporting environmental, social, and economic sustainability. Wineries and distilleries, an important segment of EU agriculture, generate substantial levels of waste annually with grape marc, a significant by-product of these industries, representing both an environmental challenge and an untapped resource. To achieve the sector's 2050 zero-waste vision, innovative waste management strategies are crucial. This review aims to explore the potential of grape marc as a natural source of high-value compounds and its conversion into a portfolio of high-value added bio-based products. The review discusses grape marc generation and the associated waste management challenges within the wine and distillery industries. It highlights innovative biological, thermal, and chemical conversion strategies for turning grape marc into high-value products. Additionally, it provides an overview of the main components of grape marc and explores its wide range of alternative applications, with particular emphasis placed on nutraceuticals, functional food and feed, biofuels, biomaterials, and agricultural amendments. In addition, the study highlights the integration of grape marc into a fungal-based biorefinery system, as promising upcycling strategy to drive innovation in the development of bio-based products, enabling a transformative waste-to-resource pathway. The findings support the advancement of innovative and feasible valorization models, contributing to sustainable waste management practices within circular economy framework.
Collapse
Affiliation(s)
- Luziana Hoxha
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, PD, Italy; Swedish Centre for Resource Recovery, University of Borås 50190 Borås, Sweden
| | | | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of Padova, 31015 Conegliano, TV, Italy
| |
Collapse
|
3
|
Wang Z, Du C, Yan R, Li S, Zheng G, Ding D. Sustainable polyhydroxybutyrate (PHB) production from biowastes by Halomonas sp. WZQ-1 under non-sterile conditions. Int J Biol Macromol 2025; 311:143643. [PMID: 40306522 DOI: 10.1016/j.ijbiomac.2025.143643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Polyhydroxyalkanoates (PHA) are promising candidates for replacing petroleum-derived plastics; however, their high production costs limit their commercialisation. In this study, we successfully isolated an efficient PHA-producing strain from a salt lake, which was subsequently identified as Halomonas sp. WZQ-1. Notably, Halomonas sp. WZQ-1 could serve as a promising cell-factory platform for polyhydroxybutyrate (PHB) production, achieving a comparatively high PHB productivity (7.64 ± 0.4 g L-1) under moderate salt stress (60 g L-1 NaCl). We further realised semi-continuous PHB production in a bench-scale fermenter at a steady state by irregularly replenishing the organic substrate. The maximum PHB concentration reached 12.13 g L-1. Finally, we realised the non-sterile conversion of typical biowastes (e.g. pomelo and cantaloupe residues) to PHB using Halomonas sp. WZQ-1. Encouragingly, 4.36 g L-1 PHB was directly obtained from the hydrolysate of pomelo residues with a characteristic melting temperature of 174.0 °C. Life cycle assessment was employed to systematically evaluate the environmental sustainability and potential challenges of biowaste-driven PHB biorefineries. Overall, our findings could serve as a pivotal step toward the commercialisation of PHB and provide a valuable reference for PHB biorefineries.
Collapse
Affiliation(s)
- Ziqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyu Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruyu Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuying Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanyu Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Marotta A, Borriello A, Khan MR, Cavella S, Ambrogi V, Torrieri E. Boosting Food Packaging Sustainability Through the Valorization of Agri-Food Waste and By-Products. Polymers (Basel) 2025; 17:735. [PMID: 40292599 PMCID: PMC11946487 DOI: 10.3390/polym17060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
The environmental concerns associated with synthetic polymers have intensified the search for sustainable and biodegradable alternatives, particularly for food packaging applications. Natural biopolymers offer promising solutions due to their biodegradability, reduced environmental impact, and reliance on renewable resources. Among these, agri-food waste and by-products have gained significant attention as valuable feedstocks for polymer production, supporting a circular economy approach. This review critically examines the current status of biopolymers derived from plant, animal, and microbial sources, focusing on their physical and chemical properties and their application in food packaging. The findings underscore that the properties of plant- and animal-based biopolymers are heavily influenced by the source material and extraction techniques, with successful examples in biodegradable films, coatings, and composite materials. However, a critical gap remains in the characterization of microbial biopolymers, as research in this area predominantly focuses on optimizing production processes rather than evaluating their material properties. Despite this limitation, microbial biopolymers have demonstrated considerable potential in composite films and fillers. By addressing these gaps and evaluating the key factors that influence the success of biopolymer-based packaging, we contribute to the ongoing efforts to develop sustainable food packaging solutions and reduce the environmental impact of plastic waste.
Collapse
Affiliation(s)
- Angela Marotta
- Department of Chemical, Materials, and Industrial Production Engineering (INSTM Consortium—UdR Naples), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (A.M.); (V.A.)
| | - Angela Borriello
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici, Italy;
| | - Muhammad Rehan Khan
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich, 47521 Cesena, Italy;
| | - Silvana Cavella
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici, Italy;
| | - Veronica Ambrogi
- Department of Chemical, Materials, and Industrial Production Engineering (INSTM Consortium—UdR Naples), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (A.M.); (V.A.)
| | - Elena Torrieri
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici, Italy;
| |
Collapse
|
5
|
Grgurević K, Bramberger D, Miloloža M, Stublić K, Ocelić Bulatović V, Ranilović J, Ukić Š, Bolanča T, Cvetnić M, Markić M, Kučić Grgić D. Producing and Characterizing Polyhydroxyalkanoates from Starch and Chickpea Waste Using Mixed Microbial Cultures in Solid-State Fermentation. Polymers (Basel) 2024; 16:3407. [PMID: 39684153 DOI: 10.3390/polym16233407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The environmental impact of plastic waste is a growing global challenge, primarily due to non-biodegradable plastics from fossil resources that accumulate in ecosystems. Biodegradable polymers like polyhydroxyalkanoates (PHAs) offer a sustainable alternative. PHAs are microbial biopolymers produced by microorganisms using renewable substrates, including agro-industrial byproducts, making them eco-friendly and cost-effective. This study focused on the isolation and characterization of PHA-producing microorganisms from agro-industrial waste, including chickpeas, chickpeas with bean residues, and starch. Screening via Sudan Black staining identified PHA-accumulating strains such as Brevibacillus sp., Micrococcus spp., and Candida krusei, among others. To assess the potential for PHA biosynthesis, solid-state fermentation (SSF) was conducted using agro-industrial waste as substrates, along with a mixed culture of the isolated microorganisms. The highest observed yield was a PHA accumulation of 13.81%, achieved with chickpeas containing bean residues. Structural and thermal characterization of the PHAs was performed using Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FTIR-ATR spectra indicated polyhydroxybutyrate (PHB), suggesting it as the synthesized PHA type. This study highlights the potential of agro-industrial waste for sustainable PHA production and eco-friendly bioplastics.
Collapse
Affiliation(s)
- Karlo Grgurević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dora Bramberger
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Martina Miloloža
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | | | - Vesna Ocelić Bulatović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | | | - Šime Ukić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Tomislav Bolanča
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Matija Cvetnić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marinko Markić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dajana Kučić Grgić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Ahuja V, Chauhan S, Purewal SS, Mehariya S, Patel AK, Kumar G, Megharaj M, Yang YH, Bhatia SK. Microbial alchemy: upcycling of brewery spent grains into high-value products through fermentation. Crit Rev Biotechnol 2024; 44:1367-1385. [PMID: 38163946 DOI: 10.1080/07388551.2023.2286430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.
Collapse
Affiliation(s)
- Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Shikha Chauhan
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Sukhvinder Singh Purewal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Norway
| | - Mallavarapu Megharaj
- Global Centre for Environmental remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
| | - Yung-Hun Yang
- Institute for Ubiquitous Information Technology and Applications, Seoul, Republic of Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Institute for Ubiquitous Information Technology and Applications, Seoul, Republic of Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Xie Z, Dan M, Zhao G, Wang D. Recent advances in microbial high-value utilization of brewer's spent grain. BIORESOURCE TECHNOLOGY 2024; 408:131197. [PMID: 39097237 DOI: 10.1016/j.biortech.2024.131197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Mitigating the adverse impacts of agricultural and industrial by-products on human populations and the environment is essential. It is crucial to continually explore methods to upgrade and reengineer these by-products. Brewer's Spent Grain (BSG), the primary by-product of the beer brewing process, constitutes approximately 85% of these by-products. Its high moisture content and rich nutritional profile make BSG a promising candidate for microbial utilization. Consequently, valorizing high-yield, low-cost BSG through microbial fermentation adds significant value. This paper provides a comprehensive overview of two valorization pathways for BSG via microbial processing, tailored to the desired end products: utilizing fermented BSG as a nutritional supplement in human or animal diets, or cultivating edible fungi using BSG as a substrate. The review also explores the microbial fermentation of BSG to produce valuable metabolites, laying a theoretical foundation for its high-value utilization.
Collapse
Affiliation(s)
- Zhengjie Xie
- Yibin Academy of Southwest University, Yibin 644000, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- Yibin Academy of Southwest University, Yibin 644000, China; College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Garcia-Muchart E, Martínez-Avila O, Mejias L, Gilles E, Bluteau C, Lavergne L, Ponsá S. Novel biostimulant bacterial exopolysaccharides production via solid-state fermentation as a valorisation strategy for agri-food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34435-y. [PMID: 39044054 DOI: 10.1007/s11356-024-34435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Bacterial exopolysaccharides (EPS) are extracellular polymer-based substances recently defined as potential plant biostimulants, as they can increase nutrient uptake, water retention, and resistance to abiotic stress. As sugar-based substances, the bacteria producing them need to grow in a sugar-rich substrate. Hence, some agri-food by-products could be used as suitable carbon sources for EPS production as a cost-effective and more sustainable alternative to conventional substrates. Thus, this study aimed to produce EPS from specific bacterial strains through solid-state fermentation (SSF) using agri-food waste as a low-cost substrate. Six residues and five bacterial strains were tested in a lab-scale SSF system. From the assessed substrate-strain combinations, Burkholderia cepacia with ginger juice waste (GJW) resulted in the most promising considering several process parameters (EPS production, cumulative oxygen consumption, biomass growth, reducing sugars consumption). Also, dynamic monitoring of the system allowed for establishing 5 days as a suitable fermentation time. Then, using response surface methodology (Box-Behnken design), the process was optimised based on airflow rate (AF), inoculum size (IS), and micronutrient concentration (MN). In this stage, the best conditions found were at 0.049 (± 0.014) L h-1 per gram of dry matter (DM) for AF, 8.4 (± 0.9) E + 09 CFU g-1 DM for IS, and 0.07 (± 0.01) mL g-1 DM for MN, reaching up to 71.1 (± 3.2) mg crude EPS g-1 DM. Results show the potential of this approach to provide a new perspective on the value chain for the agri-food industry by introducing it to a circular economy framework.
Collapse
Affiliation(s)
- Enric Garcia-Muchart
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Oscar Martínez-Avila
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain.
| | - Laura Mejias
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Eline Gilles
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Chloé Bluteau
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Lucie Lavergne
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Sergio Ponsá
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| |
Collapse
|
9
|
Kumar V, Fox BG, Takasuka TE. Consolidated bioprocessing of plant biomass to polyhydroxyalkanoate by co-culture of Streptomyces sp. SirexAA-E and Priestia megaterium. BIORESOURCE TECHNOLOGY 2023; 376:128934. [PMID: 36940873 DOI: 10.1016/j.biortech.2023.128934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Polyhydroxyalkanoate (PHA) production from plant biomass is an ideal way to realize sustainable PHA-based bioplastic. The present study demonstrated consolidated bioconversion of plant biomass to PHA by co-culturing two specialized bacteria, cellulolytic Streptomyces sp. SirexAA-E and PHA producing Priestia megaterium. In monoculture, S. sp. SirexAA-E does not produce PHA, while P. megaterium did not grow on plant polysaccharides. The co-culture showed poly(3-hydroxybutyrate) (PHB) production using purified polysaccharides, including cellulose, xylan, mannan and their combinations, and plant biomass (Miscanthus, corn stalk and corn leaves) as sole carbon sources, confirmed by GC-MS. The co-culture inoculated with 1:4 (v/v) ratio of S. sp. SirexAA-E to P. megaterium produced 40 mg PHB/g Miscanthus using 0.5% biomass loading. Realtime PCR showed ∼85% S. sp. SirexAA-E and ∼15% P. megaterium in the co-culture. Thus, this study provides a concept of proof for one-pot bioconversion of plant biomass into PHB without separate saccharification processes.
Collapse
Affiliation(s)
- Vijay Kumar
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Brian G Fox
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan; US-DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; Global Station for Food, Land and Water Resources, Hokkaido University, Sapporo, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan; Global Station for Food, Land and Water Resources, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
Kumar V, Lakkaboyana SK, Tsouko E, Maina S, Pandey M, Umesh M, Singhal B, Sharma N, Awasthi MK, Andler R, Jayaraj I, Yuzir A. Commercialization potential of agro-based polyhydroxyalkanoates biorefinery: A technical perspective on advances and critical barriers. Int J Biol Macromol 2023; 234:123733. [PMID: 36801274 DOI: 10.1016/j.ijbiomac.2023.123733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The exponential increase in the use and careless discard of synthetic plastics has created an alarming concern over the environmental health due to the detrimental effects of petroleum based synthetic polymeric compounds. Piling up of these plastic commodities on various ecological niches and entry of their fragmented parts into soil and water has clearly affected the quality of these ecosystems in the past few decades. Among the many constructive strategies developed to tackle this global issue, use of biopolymers like polyhydroxyalkanoates as sustainable alternatives for synthetic plastics has gained momentum. Despite their excellent material properties and significant biodegradability, polyhydroxyalkanoates still fails to compete with their synthetic counterparts majorly due to the high cost associated with their production and purification thereby limiting their commercialization. Usage of renewable feedstocks as substrates for polyhydroxyalkanoates production has been the thrust area of research to attain the sustainability tag. This review work attempts to provide insights about the recent developments in the production of polyhydroxyalkanoates using renewable feedstock along with various pretreatment methods used for substrate preparation for polyhydroxyalkanoates production. Further, the application of blends based on polyhydroxyalkanoates, and the challenges associated with the waste valorization based polyhydroxyalkanoates production strategy is elaborated in this review work.
Collapse
Affiliation(s)
- Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| | - Sivarama Krishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India; Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT)-Universiti Technologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Erminta Tsouko
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, Metropolite Ioakeim 2, 81400, Myrina, Lemnos, Greece
| | - Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Muskan Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Chile
| | - Iyyappan Jayaraj
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Ali Yuzir
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT)-Universiti Technologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Piecha CR, Alves TC, Zanini MLDO, Corrêa CDPL, Leite FPL, Galli V, Diaz PS. Application of the solid-state fermentation process and its variations in PHA production: a review. Arch Microbiol 2022; 205:11. [PMID: 36460824 DOI: 10.1007/s00203-022-03336-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022]
Abstract
Solid-state fermentation (SSF) is a type of fermentation process with potential to use agro-industrial by-products as a carbon source. Nonetheless, there are few studies evaluating SSF compared to submerged fermentation (SmF) to produce polyhydroxyalkanoates (PHAs). Different methodologies are available associating the two processes. In general, the studies employ a 1st step by SSF to hydrolyze the agro-industrial by-products used as a carbon source, and a 2nd step to produce PHA that can be carried out by SmF or SSF. This paper reviewed and compared the different methodologies described in the literature to assess their potential for use in PHA production. The studies evaluated showed that highest PHA yields (86.2% and 82.3%) were achieved by associating SSF and SmF by Cupriavidus necator. Meanwhile, in methodologies using only SSF, Bacillus produced the highest yields (62% and 56.8%). Since PHA (%) does not necessarily represent a higher production by biomass, the productivity parameter was also compared between studies. We observed that the highest productivity results did not necessarily represent the highest PHA (%). C. necator presented the highest PHA yields associating SSF and SmF, however, is not the most suitable microorganism for PHA production by SSF. Concomitant use of C. necator and Bacillus is suggested for future studies in SSF. Also, it discusses the lack of studies on the association of the two fermentation methodologies, and on the scaling of SSF process for PHA production. In addition to demonstrating the need for standardization of results, for comparison between different methodologies.
Collapse
Affiliation(s)
- Camila Rios Piecha
- Bioprocess Technology Laboratory, Biotechnology, Technological Development Center, Federal University of Pelotas, RS, Zip Code 96010-90, Pelotas, Brazil.
| | - Taisha Carvalho Alves
- Center for Chemical, Pharmaceutical and Food Science, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Maria Luiza de Oliveira Zanini
- Bioprocess Technology Laboratory, Biotechnology, Technological Development Center, Federal University of Pelotas, RS, Zip Code 96010-90, Pelotas, Brazil
| | - Caroline de Paula Lopes Corrêa
- Bioprocess Technology Laboratory, Biotechnology, Technological Development Center, Federal University of Pelotas, RS, Zip Code 96010-90, Pelotas, Brazil
| | - Fábio Pereira Leivas Leite
- Bioprocess Technology Laboratory, Biotechnology, Technological Development Center, Federal University of Pelotas, RS, Zip Code 96010-90, Pelotas, Brazil
| | - Vanessa Galli
- Bioprocess Technology Laboratory, Biotechnology, Technological Development Center, Federal University of Pelotas, RS, Zip Code 96010-90, Pelotas, Brazil
| | - Patrícia Silva Diaz
- Bioprocess Technology Laboratory, Biotechnology, Technological Development Center, Federal University of Pelotas, RS, Zip Code 96010-90, Pelotas, Brazil
| |
Collapse
|
12
|
Valorization of Brewery Waste through Polyhydroxyalkanoates Production Supported by a Metabolic Specialized Microbiome. Life (Basel) 2022; 12:life12091347. [PMID: 36143384 PMCID: PMC9505892 DOI: 10.3390/life12091347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Raw brewers’ spent grain, a by-product of beer production, is produced at a large scale and is usually used as animal feed or is landfilled. However, its composition shows that this feedstock has the potential for other applications, such as bioplastics production (e.g., polyhydroxyalkanoates). In this way, the aim of this work was to assess the use of raw brewers’ spent grain for polyhydroxyalkanoates production, adding new value to this feedstock. The results confirm the potential of raw brewers’ spent grain to produce polyhydroxyalkanoates, as the population was enriched in the microorganisms able to accumulate these biopolymers. These results will contribute to society’s knowledge and competence via the development of a treatment process for brewery waste of both environmental (productive waste treatment) and economic interest (production of biopolymers), which will certainly attract its application to the brewery industry worldwide. Abstract Raw brewers’ spent grain (BSG), a by-product of beer production and produced at a large scale, presents a composition that has been shown to have potential as feedstock for several biological processes, such as polyhydroxyalkanoates (PHAs) production. Although the high interest in the PHA production from waste, the bioconversion of BSG into PHA using microbial mixed cultures (MMC) has not yet been explored. This study explored the feasibility to produce PHA from BSG through the enrichment of a mixed microbial culture in PHA-storing organisms. The increase in organic loading rate (OLR) was shown to have only a slight influence on the process performance, although a high selectivity in PHA-storing microorganisms accumulation was reached. The culture was enriched on various PHA-storing microorganisms, such as bacteria belonging to the Meganema, Carnobacterium, Leucobacter, and Paracocccus genera. The enrichment process led to specialization of the microbiome, but the high diversity in PHA-storing microorganisms could have contributed to the process stability and efficiency, allowing for achieving a maximum PHA content of 35.2 ± 5.5 wt.% (VSS basis) and a yield of 0.61 ± 0.09 CmmolPHA/CmmolVFA in the accumulation assays. Overall, the production of PHA from fermented BSG is a feasible process confirming the valorization potential of the feedstock through the production of added-value products.
Collapse
|
13
|
Hydrothermal treatment of lignocellulose waste for the production of polyhydroxyalkanoates copolymer with potential application in food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Martínez-Avila O, Llenas L, Ponsá S. Sustainable polyhydroxyalkanoates production via solid-state fermentation: Influence of the operational parameters and scaling up of the process. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|