1
|
Ángeles-Argáiz RE, Aguirre-Beltrán LFL, Hernández-Oaxaca D, Quintero-Corrales C, Trujillo-Roldán MA, Castillo-Ramírez S, Garibay-Orijel R. Assembly collapsing versus heterozygosity oversizing: detection of homokaryotic and heterokaryotic Laccaria trichodermophora strains by hybrid genome assembly. Microb Genom 2024; 10:001218. [PMID: 38529901 PMCID: PMC10995626 DOI: 10.1099/mgen.0.001218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Genome assembly and annotation using short-paired reads is challenging for eukaryotic organisms due to their large size, variable ploidy and large number of repetitive elements. However, the use of single-molecule long reads improves assembly quality (completeness and contiguity), but haplotype duplications still pose assembly challenges. To address the effect of read length on genome assembly quality, gene prediction and annotation, we compared genome assemblers and sequencing technologies with four strains of the ectomycorrhizal fungus Laccaria trichodermophora. By analysing the predicted repertoire of carbohydrate enzymes, we investigated the effects of assembly quality on functional inferences. Libraries were generated using three different sequencing platforms (Illumina Next-Seq, Mi-Seq and PacBio Sequel), and genomes were assembled using single and hybrid assemblies/libraries. Long reads or hybrid assemby resolved the collapsing of repeated regions, but the nuclear heterozygous versions remained unresolved. In dikaryotic fungi, each cell includes two nuclei and each nucleus has differences not only in allelic gene version but also in gene composition and synteny. These heterokaryotic cells produce fragmentation and size overestimation of the genome assembly of each nucleus. Hybrid assembly revealed a wider functional diversity of genomes. Here, several predicted oxidizing activities on glycosyl residues of oligosaccharides and several chitooligosaccharide acetylase activities would have passed unnoticed in short-read assemblies. Also, the size and fragmentation of the genome assembly, in combination with heterozygosity analysis, allowed us to distinguish homokaryotic and heterokaryotic strains isolated from L. trichodermophora fruit bodies.
Collapse
Affiliation(s)
- Rodolfo Enrique Ángeles-Argáiz
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito de los Posgrados s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C. Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, México, C.P. 91612, Mexico
| | - Luis Fernando Lozano Aguirre-Beltrán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
| | - Diana Hernández-Oaxaca
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C. Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, México, C.P. 91073, Mexico
| | - Christian Quintero-Corrales
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito de los Posgrados s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
| | - Mauricio A. Trujillo-Roldán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico, C.P. 22860, Mexico
| | - Santiago Castillo-Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
| |
Collapse
|
2
|
Khalaf A, Lawniczak MKN, Blaxter ML, Jaron KS. Polyploidy is widespread in Microsporidia. Microbiol Spectr 2024; 12:e0366923. [PMID: 38214524 PMCID: PMC10845963 DOI: 10.1128/spectrum.03669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Microsporidia are obligate intracellular eukaryotic parasites with an extremely broad host range. They have both economic and public health importance. Ploidy in microsporidia is variable, with a few species formally identified as diploid and one as polyploid. Given the increase in the number of studies sequencing microsporidian genomes, it is now possible to assess ploidy levels across all currently explored microsporidian diversity. We estimate ploidy for all microsporidian data sets available on the Sequence Read Archive using k-mer-based analyses, indicating that polyploidy is widespread in Microsporidia and that ploidy change is dynamic in the group. Using genome-wide heterozygosity estimates, we also show that polyploid microsporidian genomes are relatively homozygous, and we discuss the implications of these findings on the timing of polyploidization events and their origin.IMPORTANCEMicrosporidia are single-celled intracellular parasites, distantly related to fungi, that can infect a broad range of hosts, from humans all the way to protozoans. Exploiting the wealth of microsporidian genomic data available, we use k-mer-based analyses to assess ploidy status across the group. Understanding a genome's ploidy is crucial in order to assemble it effectively and may also be relevant for better understanding a parasite's behavior and life cycle. We show that tetraploidy is present in at least six species in Microsporidia and that these polyploidization events are likely to have occurred independently. We discuss why these findings may be paradoxical, given that Microsporidia, like other intracellular parasites, have extremely small, reduced genomes.
Collapse
Affiliation(s)
- Amjad Khalaf
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Mark L. Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kamil S. Jaron
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
3
|
Talhinhas P, Carvalho R, Tavares S, Ribeiro T, Azinheira H, Ramos AP, Silva MDC, Monteiro M, Loureiro J, Morais-Cecílio L. Diploid Nuclei Occur throughout the Life Cycles of Pucciniales Fungi. Microbiol Spectr 2023; 11:e0153223. [PMID: 37289058 PMCID: PMC10433954 DOI: 10.1128/spectrum.01532-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023] Open
Abstract
Within Eukaryotes, fungi are the typical representatives of haplontic life cycles. Basidiomycota fungi are dikaryotic in extensive parts of their life cycle, but diploid nuclei are known to form only in basidia. Among Basidiomycota, the Pucciniales are notorious for presenting the most complex life cycles, with high host specialization, and for their expanded genomes. Using cytogenomic (flow cytometry and cell sorting on propidium iodide-stained nuclei) and cytogenetic (FISH with rDNA probe) approaches, we report the widespread occurrence of replicating haploid and diploid nuclei (i.e., 1C, 2C and a small proportion of 4C nuclei) in diverse life cycle stages (pycnial, aecial, uredinial, and telial) of all 35 Pucciniales species analyzed, but not in sister taxa. These results suggest that the Pucciniales life cycle is distinct from any cycle known, i.e., neither haplontic, diplontic nor haplodiplontic, corroborating patchy and disregarded previous evidence. However, the biological basis and significance of this phenomenon remain undisclosed. IMPORTANCE Within Eukaryotes, fungi are the typical representatives of haplontic life cycles, contrasting with plants and animals. As such, fungi thus contain haploid nuclei throughout their life cycles, with sexual reproduction generating a single diploid cell upon karyogamy that immediately undergoes meiosis, thus resuming the haploid cycle. In this work, using cytogenetic and cytogenomic tools, we demonstrate that a vast group of fungi presents diploid nuclei throughout their life cycles, along with haploid nuclei, and that both types of nuclei replicate. Moreover, haploid nuclei are absent from urediniospores. The phenomenon appears to be transversal to the organisms in the order Pucciniales (rust fungi) and it does not occur in neighboring taxa, but a biological explanation or function for it remains elusive.
Collapse
Affiliation(s)
- Pedro Talhinhas
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Carvalho
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Sílvia Tavares
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
| | - Teresa Ribeiro
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Azinheira
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
| | - Ana Paula Ramos
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LPVVA, Laboratório de Patologia Vegetal “Veríssimo de Almeida”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Maria do Céu Silva
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
| | | | - João Loureiro
- CFE-Centre for Functional Ecology and Terra Associated Laboratory, Departamento de Ciências da Vida, Universidade de Coimbra, Coimbra, Portugal
| | - Leonor Morais-Cecílio
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Shang J, Xu S, Tang L, Yang R, Gong M, Li Y, Wang Y, Zou G, Wan J, Bao D. Transformation of Compatible Mating-Type Genes in Monokaryons Triggers Fruiting Body Development by Activating Mating Pathways in Pleurotus eryngii. Microbiol Spectr 2023; 11:e0527222. [PMID: 36916925 PMCID: PMC10100773 DOI: 10.1128/spectrum.05272-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
Fruiting body formation is the most important developmental event in the edible mushroom life cycle; however, the genetic regulation of this process is not well understood. Pleurotus eryngii is a widely cultivated mushroom with high economic value. The mating of two monokaryons carrying compatible A and B mating-type genes is required for the development of fruiting bodies in P. eryngii. In this study, we showed that the monokaryons of P. eryngii transformed with compatible homeodomain (A mating type) and pheromone (B mating type) genes can complete fruiting body development but cannot form basidiospores. Transcriptional analyses revealed that expression of endogenous homeodomain and pheromone receptor genes and mating signaling pathways were activated by transferred homeodomain and pheromone genes in the transformants. Our findings provide a novel model for studying fruiting body development, which may accelerate the genetic breeding of edible mushrooms in the future. IMPORTANCE Fruiting bodies of edible mushrooms have high nutritional value. However, the fruiting body development of mushrooms is not well understood, and thus, many wild edible mushrooms of economic importance cannot be cultivated artificially. Moreover, variety among cultivatable mushrooms has improved marginally. Under natural conditions, fruiting body development can be initiated only in a dikaryon, the sexual mycelium obtained from mating two compatible monokaryons. The present work showed induction of fruiting body development in Pleurotus eryngii monokaryons by genetic manipulation. Gene expression analyses revealed key genes and signaling pathways involved in the fruiting body development of P. eryngii.
Collapse
Affiliation(s)
- Junjun Shang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Science, Shanghai Ocean University, Shanghai, China
| | - Sijia Xu
- College of Food Science, Shanghai Ocean University, Shanghai, China
| | - Lihua Tang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ruiheng Yang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ming Gong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Gen Zou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianing Wan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dapeng Bao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Auxier B, Czárán TL, Aanen DK. Modelling the consequences of the dikaryotic life cycle of mushroom-forming fungi on genomic conflict. eLife 2022; 11:75917. [PMID: 35441591 PMCID: PMC9084891 DOI: 10.7554/elife.75917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Generally, sexual organisms contain two haploid genomes, one from each parent, united in a single diploid nucleus of the zygote which links their fate during growth. A fascinating exception to this is Basidiomycete fungi, where the two haploid genomes remain separate in a dikaryon, retaining the option to fertilize subsequent monokaryons encountered. How the ensuing nuclear competition influences the balance of selection within and between individuals is largely unexplored. We test the consequences of the dikaryotic life cycle for mating success and mycelium-level fitness components. We assume a trade-off between mating fitness at the level of the haploid nucleus and fitness of the fungal mycelium. We show that the maintenance of fertilization potential by dikaryons leads to a higher proportion of fertilized monokaryons, but that the ensuing intradikaryon selection for increased nuclear mating fitness leads to reduced mycelium fitness relative to a diploid life cycle. However, this fitness reduction is lower compared to a hypothetical life cycle where dikaryons can also exchange nuclei. Prohibition of fusion between dikaryons therefore reduces the level of nuclear parasitism. The number of loci influencing fitness is an important determinant of the degree to which average mycelium-level fitness is reduced. The results of this study crucially hinge upon a trade-off between nucleus and mycelium-level fitness. We discuss the evidence for this assumption and the implications of an alternative that there is a positive relationship between nucleus and mycelium-level fitness.
Collapse
Affiliation(s)
- Benjamin Auxier
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | | | - Duur K Aanen
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
6
|
Yan D, Liu Y, Rong C, Song S, Zhao S, Qin L, Wang S, Gao Q. Characterization of brown film formed by Lentinula edodes. Fungal Biol 2020; 124:135-143. [DOI: 10.1016/j.funbio.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
|
7
|
McCluskey K, Baker SE. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology 2017; 8:67-83. [PMID: 30123633 PMCID: PMC6059044 DOI: 10.1080/21501203.2017.1281849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023] Open
Abstract
Filamentous fungi have been important as model organisms since the beginning of modern biological inquiry and have benefitted from open data since the earliest genetic maps were shared. From early origins in simple Mendelian genetics of mating types, parasexual genetics of colony colour, and the foundational demonstration of the segregation of a nutritional requirement, the contribution of research systems utilising filamentous fungi has spanned the biochemical genetics era, through the molecular genetics era, and now are at the very foundation of diverse omics approaches to research and development. Fungal model organisms have come from most major taxonomic groups although Ascomycete filamentous fungi have seen the most major sustained effort. In addition to the published material about filamentous fungi, shared molecular tools have found application in every area of fungal biology. Similarly, shared data has contributed to the success of model systems. The scale of data supporting research with filamentous fungi has grown by 10 to 12 orders of magnitude. From genetic to molecular maps, expression databases, and finally genome resources, the open and collaborative nature of the research communities has assured that the rising tide of data has lifted all of the research systems together.
Collapse
Affiliation(s)
- Kevin McCluskey
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Scott E. Baker
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
8
|
|
9
|
Kües U. In memory of Lorna Ann Casselton, CBE, MA, PhD, DSc, MAE, FRS. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|