1
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Costa S, Lopes I. Saprolegniosis in Amphibians: An Integrated Overview of a Fluffy Killer Disease. J Fungi (Basel) 2022; 8:jof8050537. [PMID: 35628794 PMCID: PMC9144230 DOI: 10.3390/jof8050537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Amphibians constitute the class of vertebrates with the highest proportion of threatened species, with infectious diseases being considered among the greatest causes for their worldwide decline. Aquatic oomycetes, known as “water molds,” are fungus-like microorganisms that are ubiquitous in freshwater ecosystems and are capable of causing disease in a broad range of amphibian hosts. Various species of Achlya sp., Leptolegnia sp., Aphanomyces sp., and mainly, Saprolegnia sp., are responsible for mass die-offs in the early developmental stages of a wide range of amphibian populations through a disease known as saprolegniosis, aka, molding or a “Saprolegnia-like infection.” In this context, the main objective of the present review was to bring together updated information about saprolegniosis in amphibians to integrate existing knowledge, identify current knowledge gaps, and suggest future directions within the saprolegniosis–amphibian research field. Based on the available literature and data, an integrated and critical interpretation of the results is discussed. Furthermore, the occurrence of saprolegniosis in natural and laboratory contexts and the factors that influence both pathogen incidence and host susceptibility are also addressed. The focus of this work was the species Saprolegnia sp., due to its ecological importance on amphibian population dynamics and due to the fact that this is the most reported genera to be associated with saprolegniosis in amphibians. In addition, integrated emerging therapies, and their potential application to treat saprolegniosis in amphibians, were evaluated, and future actions are suggested.
Collapse
|
3
|
Gastrointestinal Microbiota of Spiny Lobster: A Review. FISHES 2022. [DOI: 10.3390/fishes7030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gastrointestinal (GI) microbiota is a group of complex and dynamic microorganisms present in the GI tract of an organism that live in symbiosis with the host and benefit the host with various biological functions. The communities of GI microbiota are formed by various aerobic, anaerobic, and facultatively anaerobic bacteria in aquatic species. In spiny lobsters, common GI microorganisms found in the GI tract are Vibrio, Pseudomonas, Bacillus, Micrococcus, and Flavobacterium, where the structure and abundance of these microbes are varied depending on the environment. GI microbiotas hold an important role and significantly affect the overall condition of spiny lobsters, such as secreting digestive enzymes (lipase, protease, and cellulase), helping in digesting food intake, providing nutrition and synthesising vitamins needed by the host system, and protecting the host against infection from pathogens and diseases by activating an immune mechanism in the GI tract. The microorganisms in the water column, sediment, and diet are primarily responsible for altering, manipulating, and shaping GI microbial structures and communities. This review also highlights the possibilities of isolating the indigenous GI microbiota as a potential probiotic strain and introducing it to spiny lobster juveniles and larvae for better health management.
Collapse
|
4
|
Pires-Zottarelli CLA, de Oliveira Da Paixão SC, da Silva Colombo DR, Boro MC, de Jesus AL. Saprolegnia atlantica sp. nov. (Oomycota, Saprolegniaceae) from Brazil, and new synonymizations and epitypifications in the genus Saprolegnia. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Evaluation of blood cell viability rate, gene expression, and O-GlcNAcylation profiles as indicative signatures for fungal stimulation of salmonid cell models. Mol Immunol 2021; 142:120-129. [PMID: 34979452 DOI: 10.1016/j.molimm.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
Fungal diseases of fish are a significant economic problem in aquaculture. Using high-throughput expression analysis, we identified potential transcript markers in primary head kidney and secondary embryonic cells from salmonid fish after stimulation with the inactivated fungi Mucor hiemalis and Fusarium aveneacium and with purified fungal molecular patterns. The transcript levels of most of the 45 selected genes were altered in head-kidney cells after 24 h of stimulation with fungal antigens. Stimulation with the inactivated fungus M. hiemalis induced the most pronounced transcriptional changes, including the pathogen receptor-encoding genes CLEC18A and TLR22, the cytokine-encoding genes IL6 and TNF, and the gene encoding the antimicrobial peptide LEAP2. In parallel, we analyzed the total GlcNAcylation status of embryonic salmonid cells with or without stimulation with inactivated fungi. O-GlcNAcylation modulates gene expression, intracellular protein, and signal activity, but we detected no significant differences after a 3-h stimulation. A pathway analysis tool identified the "apoptosis of leukocytes" based on the expression profile 24 h after fungal stimulation. Fluorescence microscopy combined with flow cytometry revealed apoptosis in 50 % of head-kidney leukocytes after 3 h stimulation with M. hiemalis, but this level decreased by > 5% after 24 h of stimulation. The number of apoptotic cells significantly increased in all blood cells after a 3-h stimulation with fungal molecular patterns compared to unstimulated controls. This in vitro approach identified transcript-based parameters that were strongly modulated by fungal infections of salmonid fish.
Collapse
|
6
|
Magray AR, Hafeez S, Ganai BA, Lone SA, Dar GJ, Ahmad F, Siriyappagouder P. Study on pathogenicity and characterization of disease causing fungal community associated with cultured fish of Kashmir valley, India. Microb Pathog 2021; 151:104715. [PMID: 33444698 DOI: 10.1016/j.micpath.2020.104715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023]
Abstract
Cultured fisheries of developing countries are continously challenged by a number of pathogenic microbes. Among microbial diseases, fungal and fungal like pathogen outbreaks lead to negative social and economic impacts on stakeholders. The cultured fisheries of Kashmir valley are also facing challenge from fungal pathogens, leading to tremendous socio-economic lossess to the fish farmer community hence, yearns to boost the sector with efficient management strategy. Our study was aimed at investigating the diversity of fungal communities infecting cultured rainbow trout and carp fish species. We employed classical microbiology, macro and micro morphological characteristics, and molecular analysis (multilocus typing) for fungal identification. Also histopathological approach was used to examine the pathogenicity patterns of diverse fungal groups. The study revealed that the infection in fish was predisposed to both superficial as well as visceral organs. However, skin, gills and head were predominantly infected compared to internal organs. The microbiological investigation of infected fish by culture dependent approach helped us to obtain the total of 250 fungal isolates. Out of these isolates, 21 different species were identified belonging to three diverse fungal groups which mostly included 14 species among Ascomycetes, 03 species of Oomycetes and 04 species of Zygomycetes. The majority of fungi which were infectious to cultured fish of valley are biotrophic or opportunistic soil fungi, and some of them being exclusive pathogens of fish.
Collapse
Affiliation(s)
- Aqib Rehman Magray
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| | - Sabira Hafeez
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India; Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India; Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Showkat Ahmad Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Gulam Jeelani Dar
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Fayaz Ahmad
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India; Department of Zoology, University of Kashmir, Srinagar, 190006, India
| | | |
Collapse
|