1
|
Wen TT, Yang YM, Zhang YX, Liu MQ, Qian ZY, Zhang ZY, Dong CH, Sun L, Xu L, Sun WJ, Cui FJ. CRISPR-Cas9/Safe Harbor-Targeted Overexpression of Glucan Synthase Gene CmGls in Edible Mushroom Cordyceps militaris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40252041 DOI: 10.1021/acs.jafc.5c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
The membrane-integrated β-1,3-glucan synthase is the key enzyme involved in the biosynthesis of the core component β-1,3-glucan of the fungal cell wall. To date, the precise and targeted insertion of the β-1,3-glucan synthase gene into the genomes of edible fungi for safe and predictable overexpression has been extremely difficult due to the large DNA sequences (>5.0 kb) encoding the multitransmembrane domains and large molecular weights. In the present study, a large 5.9 kb DNA sequence of the membrane-bound β-1,3-glucan synthase gene CmGls was successfully and precisely inserted at a genomic safe harbor site CmSh1 of the C. militaris genome for the first time. By comparing mycelial and fermentation performance, overexpression of the β-1,3-glucan synthase gene CmGls resulted in rapid radial growth with a more pronounced yellowish color and increased resistance to cell wall stresses. Overexpression of CmGls significantly improved exopolysaccharide production with higher molecular weights, accompanied by an increase in the transcription levels of genes associated with polysaccharide/glucan synthesis, such as CmPgm, CmPgi, and CmUgp. Our findings provide convincing proof for the elucidation of glucan biosynthetic pathways and a basis for developing safe strains with highly efficient production of polysaccharides/glucans by edible fungi.
Collapse
Affiliation(s)
- Ting-Ting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yu-Meng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi-Xin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Meng-Qian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo-Yu Qian
- Guangdong HAID Research Institute, Guangzhou 511400, PR China
| | - Zi-Ying Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cai-Hong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China
| |
Collapse
|
2
|
Jing F, Shi SL, Kang WJ, Wu B, Lu BF, Guan J. Integrated physiological and transcriptomic analyses reveal that cell wall biosynthesis and expansion play an important role in the regulation of plant height in alfalfa . BMC PLANT BIOLOGY 2025; 25:267. [PMID: 40021950 PMCID: PMC11869670 DOI: 10.1186/s12870-025-06172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) is a high-quality, high-protein forage, and the improvement and breeding of key traits are important for enhancing the productivity of alfalfa. Plant height is an important trait that affects crop yield, and its regulatory network mechanism has been widely reported in model plants, however, there are fewer studies on the developmental regulatory of plant height in alfalfa. RESULTS In this study, we screened tall (WL525HQ) and short (WL343HQ) alfalfa materials through field experiments and analyzed the regulatory mechanism of plant height based on the multidimensional joint analysis of phenotype, cell, physiology, and molecular biology. The results showed that internode length was an important factor determining plant height in alfalfa, and cell size affected the internode elongation to a certain extent, whereas cell size was limited by cell wall. Moreover, changes in cell wall components play an important role in cell wall expansion, especially lignin synthesis. Transcriptome analysis showed that the high expression of hydrolase activity in T1 (initiation growth period) facilitates the expansion of the cell wall, the significant enrichment of the cellular modification process in T3 (rapid growth period) increases the cell size, and the synthesis of cell wall structural constituents and plant-type cell wall organization in T5 (growth stabilization) further improves and modifies the cell wall structure. Differential genes involved in cell wall biosynthesis and expansion were mainly enriched in cellulose synthesis, pectin cleavage, lignin formation, expansion protein (EXP), and xyloglucan endotransglycosidase (XTH). CONCLUSIONS These findings elucidated the plant height regulation mechanisms throughout the alfalfa plant and provided a theoretical basis for the generation of ideal alfalfa plant height germplasm.
Collapse
Affiliation(s)
- Fang Jing
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shang-Li Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Wen-Juan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Bei Wu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Bao-Fu Lu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jian Guan
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
3
|
Cerrone F, O'Connor KE. Cultivation of filamentous fungi in airlift bioreactors: advantages and disadvantages. Appl Microbiol Biotechnol 2025; 109:41. [PMID: 39928147 PMCID: PMC11811475 DOI: 10.1007/s00253-025-13422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Filamentous fungi or mycelia are a valuable bioresource to produce several biomolecules and enzymes, especially because of their biodegradation potential and for their key role of enablers of a circular bioeconomy. Filamentous fungi can be grown in submerged cultivation to maximise the volumetric productivity of the bioprocess, instead of using the more established and time-consuming solid-state cultivation. Multicellular mycelia are sensitive to shear stresses induced by mechanical agitation, and this aspect greatly affects their morphology in submerged cultivation (pelletisation) and the connected volumetric productivity. An efficient compromise is the growth of filamentous fungi in airlift bioreactors (ALR) where the volumetric oxygen transfer (KLa) is optimal, but the shear stress is reduced. In this review, we critically analysed the advantages and disadvantages of ALR-based cultivation of filamentous fungi, comparing these bioreactors also with stirred tank reactors and bubble column reactors; we focused on scientific literature that highlights findings for the cultivation of filamentous fungi for both the production of enzymes and the production of myco-biomass in ALR; we included studies for the control of the pelletisation of the fungal biomass in batch and semi-continuous cultivation, highlighting the interlinked hydrodynamics; finally, we included studies regarding the modifications of ALR in order to enhance filamentous fungi production. KEY POINTS: • ALR are efficient for batch and prolonged continuous cultivation of filamentous fungi. • ALR show both optimal gas hold-up and KLa with an airflow that has high superficial velocity and critical bubble diameter (1-6 mm). • Suspended mycelia aggregates (pellet) maintain a fluidised motion in ALR if their size/density can be controlled.
Collapse
Affiliation(s)
- Federico Cerrone
- School of Biotechnology, Dublin City University, Glasnevin Campus Dublin, Dublin, Ireland.
- BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science (Science East) University College Dublin, Belfield Campus Dublin, Dublin, Ireland.
| | - Kevin E O'Connor
- BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science (Science East) University College Dublin, Belfield Campus Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus Dublin, Dublin, Ireland
- Bioplastech Ltd NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Chen Y, Ju H, Li H, Xu C, Jia H, Xian L, Yuan C, Guo Z, Zhang X, Yu Y, Tao Y. Light and phytochrome PHY control the production of edible fungus Flammulina filiformis by regulating the morphogenesis of fruiting bodies and l-lysine accumulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113051. [PMID: 39509944 DOI: 10.1016/j.jphotobiol.2024.113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Flammulina filiformis, a representative umbelliferous fungus, has a long stipe and high l-lysine content, thus is widely cultivated and consumed. Currently, there is a lack of theoretical guidance on how to better use light to cultivate edible fungi without photosynthesis such as F. filiformis in industrialized cultivation. Previous studies have found that blue light can affect the yield and l-lysine content of F. filiformis. The primary focus of this work was the phytochrome PHY in the light signaling pathway and its role in F. filiformis production. Unlike plants in which the expression of PHY was activated by only red light, it was found that different visible lights (including red, blue, green, and white light) can stimulate the up-regulation of FfPhy transcript levels. Throughout the developmental stages of F. filiformis, the transcript level of FfPhy was significantly up-regulated during the formation of fruiting body and in the stipe in the elongation stage. Further, FfPhy knockdown strain showed the markedly shorter stipe length than WT, resulting in a significantly reduced yield. RNA-Seq analysis showed that the most genes in MAPK signaling pathway and its downstream regulatory processes, mainly focusing on cell division and cell wall remodeling, were down-regulated after FfPhy knockdown. It suggested that FfPhy regulates the fruiting body elongation through acting on cell division and cell wall remodeling, thereby affecting the morphological development of the stipe rather than the pileus. Interestingly, FfPhy knockdown also inhibits the accumulation of l-lysine content by promoting l-lysine degradation instead of inhibiting l-lysine biosynthesis, indicating that its influence extends to metabolic processes related to l-lysine metabolism. These findings provide new insights into photobiological effect of FfPhy in macrofungus F. filiformis, and have potential guiding significance for cultivation and breeding to increase mushroom yield and l-lysine content.
Collapse
Affiliation(s)
- Yizhao Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Ju
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Chang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Jia
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijun Xian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengjin Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zexuan Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xijin Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilin Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Földi C, Merényi Z, Balázs B, Csernetics Á, Miklovics N, Wu H, Hegedüs B, Virágh M, Hou Z, Liu XB, Galgóczy L, Nagy LG. Snowball: a novel gene family required for developmental patterning of fruiting bodies of mushroom-forming fungi (Agaricomycetes). mSystems 2024; 9:e0120823. [PMID: 38334416 PMCID: PMC10949477 DOI: 10.1128/msystems.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
UNLABELLED The morphogenesis of sexual fruiting bodies of fungi is a complex process determined by a genetically encoded program. Fruiting bodies reached the highest complexity levels in the Agaricomycetes; yet, the underlying genetics is currently poorly known. In this work, we functionally characterized a highly conserved gene termed snb1, whose expression level increases rapidly during fruiting body initiation. According to phylogenetic analyses, orthologs of snb1 are present in almost all agaricomycetes and may represent a novel conserved gene family that plays a substantial role in fruiting body development. We disrupted snb1 using CRISPR/Cas9 in the agaricomycete model organism Coprinopsis cinerea. snb1 deletion mutants formed unique, snowball-shaped, rudimentary fruiting bodies that could not differentiate caps, stipes, and lamellae. We took advantage of this phenotype to study fruiting body differentiation using RNA-Seq analyses. This revealed differentially regulated genes and gene families that, based on wild-type RNA-Seq data, were upregulated early during development and showed tissue-specific expression, suggesting a potential role in differentiation. Taken together, the novel gene family of snb1 and the differentially expressed genes in the snb1 mutants provide valuable insights into the complex mechanisms underlying developmental patterning in the Agaricomycetes. IMPORTANCE Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are complex multicellular structures, with a spatially and temporally integrated developmental program that is, however, currently poorly known. In this study, we present a novel, conserved gene family, Snowball (snb), termed after the unique, differentiation-less fruiting body morphology of snb1 knockout strains in the model mushroom Coprinopsis cinerea. snb is a gene of unknown function that is highly conserved among agaricomycetes and encodes a protein of unknown function. A comparative transcriptomic analysis of the early developmental stages of differentiated wild-type and non-differentiated mutant fruiting bodies revealed conserved differentially expressed genes which may be related to tissue differentiation and developmental patterning fruiting body development.
Collapse
Affiliation(s)
- Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Bálint Balázs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Árpád Csernetics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Nikolett Miklovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Hongli Wu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Zhihao Hou
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - László Galgóczy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| |
Collapse
|
6
|
Pérez-Bassart Z, Bäuerl C, Fabra MJ, Martínez-Abad A, Collado MC, López-Rubio A. Composition, structural properties and immunomodulatory activity of several aqueous Pleurotus β-glucan-rich extracts. Int J Biol Macromol 2023; 253:127255. [PMID: 37827398 DOI: 10.1016/j.ijbiomac.2023.127255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
In this work, aqueous extracts from six different Pleurotus species were obtained and their yield, gross composition, β-glucan content, monosaccharide profile, thermal stability, molecular weight distribution, and FT-IR were analyzed before and after purification through ethanol precipitation of the carbohydrate-rich fractions. The bioactivity (anti-inflammatory and immunomodulatory activity) of the various fractions obtained was also analyzed in three different cell cultures and compared with a lentinan control. The trend observed after purification of the aqueous fractions was an increase in the concentration of polysaccharides (especially β-glucans), a decrease in ash, glucosamine and protein content and the elimination of low molecular weight (Mw) compounds, thus leaving in the purified samples high Mw populations with increased thermal stability. Interestingly, all these purified fractions displayed immunomodulatory capacity when tested in THP-1 macrophages and most of them also showed significant activity in HEK-hTLR4 cells, highlighting the bioactivity observed for Pleurotus ostreatus (both the extracts obtained from the whole mushroom and from the stipes). This specific species was richer in heteropolysaccharides, having moderate β-glucan content and being enriched upon purification in a high Mw fraction with good thermal stability.
Collapse
Affiliation(s)
- Zaida Pérez-Bassart
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Maria Jose Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
7
|
Li H, Yao S, Xia W, Ma X, Shi L, Ju H, Li Z, Zhong Y, Xie B, Tao Y. Targeted metabolome and transcriptome analyses reveal changes in gibberellin and related cell wall-acting enzyme-encoding genes during stipe elongation in Flammulina filiformis. Front Microbiol 2023; 14:1195709. [PMID: 37799602 PMCID: PMC10548271 DOI: 10.3389/fmicb.2023.1195709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Flammulina filiformis, a typical agaric fungus, is a widely cultivated and consumed edible mushroom. Elongation of its stipe (as the main edible part) is closely related to its yield and commercial traits; however, the endogenous hormones during stipe elongation and their regulatory mechanisms are not well understood. Gibberellin (GA) plays an important role in the regulation of plant growth, but little has been reported in macro fungi. In this study, we first treated F. filiformis stipes in the young stage with PBZ (an inhibitor of GA) and found that PBZ significantly inhibited elongation of the stipe. Then, we performed GA-targeted metabolome and transcriptome analyses of the stipe at both the young and elongation stages. A total of 13 types of GAs were detected in F. filiformis; the contents of ten of them, namely, GA3, GA4, GA8, GA14, GA19, GA20, GA24, GA34, GA44, and GA53, were significantly decreased, and the contents of three (GA5, GA9, and GA29) were significantly increased during stipe elongation. Transcriptome analysis showed that the genes in the terpenoid backbone biosynthesis pathway showed varying expression patterns: HMGS, HMGR, GPS, and FPPS were significantly upregulated, while CPS/KS had no significant difference in transcript level during stipe elongation. In total, 37 P450 genes were annotated to be involved in GA biosynthesis; eight of them were upregulated, twelve were downregulated, and the rest were not differentially expressed. In addition, four types of differentially expressed genes involved in stipe elongation were identified, including six signal transduction genes, five cell cycle-controlling genes, twelve cell wall-related enzymes and six transcription factors. The results identified the types and content of GAs and the expression patterns of their synthesis pathways during elongation in F. filiformis and revealed the molecular mechanisms by which GAs may affect the synthesis of cell wall components and the cell cycle of the stipe through the downstream action of cell wall-related enzymes, transcription factors, signal transduction and cell cycle control, thus regulating stipe elongation. This study is helpful for understanding the roles of GAs in stipe development in mushrooms and lays the foundation for the rational regulation of stipe length in agaric mushrooms during production.
Collapse
Affiliation(s)
- Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Sen Yao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Weiwei Xia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xinbin Ma
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huimin Ju
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ziyan Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yingli Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
9
|
Money NP. Goldilocks mushrooms: How ballistospory has shaped basidiomycete evolution. Fungal Biol 2023; 127:975-984. [PMID: 37024157 DOI: 10.1016/j.funbio.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
Ballistospory has been a governing factor in mushroom diversification. Modifications to fruit body morphology are subject to a series of fundamental constraints imposed by this uniquely fungal mechanism. Gill spacing in lamellate mushrooms, tube width in poroid species, and other configurations of the hymenium must comply with the distance that spores shoot themselves from their basidia. This reciprocal relationship between the development of fruit bodies and spores may have been maintained by a form of evolutionary seesaw proposed in this article. The necessity of the accurate gravitropic orientation of gills and tubes is another constraint on mushroom development and physiology, along with the importance of evaporative cooling of the hymenium for successful spore discharge and the aerodynamic shaping of the fruit body to aid dispersal. Ballistospory has been lost in secotioid and gasteroid basidiomycetes whose spores are dispersed by animal vectors and has been replaced by alterative mechanisms of active spore discharge in some species. Partnered with the conclusions drawn from molecular phylogenetic research, the biomechanical themes discussed in this review afford new ways to think about the evolution of basidiomycetes.
Collapse
Affiliation(s)
- Nicholas P Money
- Western Program and Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
10
|
Transcriptome Profiling Reveals Candidate Genes Related to Stipe Gradient Elongation of Flammulina filiformis. J Fungi (Basel) 2022; 9:jof9010064. [PMID: 36675885 PMCID: PMC9862757 DOI: 10.3390/jof9010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Stipe gradient elongation is an important and remarkable feature in the development of most mushroom fruiting bodies. However, its molecular mechanism has rarely been described. Here, the decreasing trend of stipe elongation and increasing trend of cell length in a gradient from the top to the base of the stipe were determined in a model basidiomycete mushroom: Flammulina filiformis. According to RNA-seq results, 1409 differentially expressed genes (DEGs) were identified among elongation region (ER), transition region (TR), and stable region (SR) samples, including 26 transcription factors (TFs). Based on Short Time-series Expression Miner (STEM) clustering of DEGs, clusters 1 and 3, with obvious expression trends that were consistent with or in contrast to the elongation rate, were screened. The cluster 1 DEGs were mainly involved in the GO cellular component category and KEGG genetic information processing class; however, the cluster 3 DEGs were mainly involved in metabolic processes. Furthermore, qRT-PCR confirmed that key genes of the long-chain fatty acid synthesis pathway were involved in stipe gradient elongation and regulated by NADPH oxidase-derived ROS signaling molecules. These findings provide an essential basis for understanding the molecular mechanism of stipe gradient elongation.
Collapse
|
11
|
Liu Y, Ma X, Long Y, Yao S, Wei C, Han X, Gan B, Yan J, Xie B. Effects of β-1,6-Glucan Synthase Gene ( FfGS6) Overexpression on Stress Response and Fruit Body Development in Flammulina filiformis. Genes (Basel) 2022; 13:1753. [PMID: 36292637 PMCID: PMC9601887 DOI: 10.3390/genes13101753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2023] Open
Abstract
β-1, 6-glucan synthase is a key enzyme of β-1, 6-glucan synthesis, which plays a vital role in the cell wall cross-linking of fungi. However, the role of the β-1, 6-glucan synthase gene in the development of the fruiting body and the stress response of macrofungi is largely unknown. In this study, four overexpression transformants of the β-1, 6-glucan synthase gene (FfGS6) were successfully obtained, and gene function was studied in Flammulina filiformis. The overexpression of FfGS6 can increase the width of mycelium cells and improve the tolerance ability under mechanical injury and oxidative stress. Moreover, FfGS6 gene expression fluctuated in up-regulation during the recovery process of mycelium injury but showed a negative correlation with H2O2 concentration. Fruiting body phenotype tests showed that mycelia's recovery ability after scratching improved when the FfGS6 gene was overexpressed. However, primordia formation and the stipe elongation ability were significantly inhibited. Our findings indicate that FfGS6 is involved in regulating mycelial cell morphology, the mycelial stress response, and fruit body development in F. filiformis.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinbin Ma
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Long
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sen Yao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chuanzheng Wei
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Reactive Oxygen Species Distribution Involved in Stipe Gradient Elongation in the Mushroom Flammulina filiformis. Cells 2022; 11:cells11121896. [PMID: 35741023 PMCID: PMC9221348 DOI: 10.3390/cells11121896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The mushroom stipe raises the pileus above the substrate into a suitable position for dispersing spores. The stipe elongates at different speeds along its length, with the rate of elongation decreasing in a gradient from the top to the base. However, the molecular mechanisms underlying stipe gradient elongation are largely unknown. Here, we used the model basidiomycete mushroom Flammulina filiformis to investigate the mechanism of mushroom stipe elongation and the role of reactive oxygen species (ROS) signaling in this process. Our results show that O2- and H2O2 exhibit opposite gradient distributions in the stipe, with higher O2- levels in the elongation region (ER), and higher H2O2 levels in the stable region (SR). Moreover, NADPH-oxidase-encoding genes are up-regulated in the ER, have a function in producing O2-, and positively regulate stipe elongation. Genes encoding manganese superoxide dismutase (MnSOD) are up-regulated in the SR, have a function in producing H2O2, and negatively regulate stipe elongation. Altogether, our data demonstrate that ROS (O2-/H2O2) redistribution mediated by NADPH oxidase and MnSODs is linked to the gradient elongation of the F. filiformis stipe.
Collapse
|
13
|
Zhao J, Yuan J, Chen Y, Wang Y, Chen J, Bi J, Lyu L, Yu C, Yuan S, Liu Z. MAPK CcSakA of the HOG Pathway Is Involved in Stipe Elongation during Fruiting Body Development in Coprinopsis cinerea. J Fungi (Basel) 2022; 8:jof8050534. [PMID: 35628789 PMCID: PMC9147448 DOI: 10.3390/jof8050534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways, such as the high-osmolarity glycerol mitogen-activated protein kinase (HOG) pathway, are evolutionarily conserved signaling modules responsible for transmitting environmental stress signals in eukaryotic organisms. Here, we identified the MAPK homologue in the HOG pathway of Coprinopsis cinerea, which was named CcSakA. Furthermore, during the development of the fruiting body, CcSakA was phosphorylated in the fast elongating apical part of the stipe, which meant that CcSakA was activated in the apical elongating stipe region of the fruiting body. The knockdown of CcSakA resulted in a shorter stipe of the fruiting body compared to the control strain, and the expression of phosphomimicking mutant CcSakA led to a longer stipe of the fruiting body compared to the control strain. The chitinase CcChiE1, which plays a key role during stipe elongation, was downregulated in the CcSakA knockdown strains and upregulated in the CcSakA phosphomimicking mutant strains. The results indicated that CcSakA participated in the elongation of stipes in the fruiting body development of C. cinerea by regulating the expression of CcChiE1. Analysis of the H2O2 concentration in different parts of the stipe showed that the oxidative stress in the elongating part of the stipe was higher than those in the non-elongating part. The results indicated that CcSakA of the HOG pathway may be activated by oxidative stress. Our results demonstrated that the HOG pathway transmits stress signals and regulates the expression of CcChiE1 during fruiting body development in C. cinerea.
Collapse
Affiliation(s)
- Jing Zhao
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Jing Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Yating Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Yu Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Jing Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Jingjing Bi
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Linna Lyu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Cigang Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (C.Y.); (Z.L.)
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
- Correspondence: (C.Y.); (Z.L.)
| |
Collapse
|
14
|
Li J, Shao Y, Yang Y, Xu C, Jing Z, Li H, Xie B, Tao Y. The Chromatin Modifier Protein FfJMHY Plays an Important Role in Regulating the Rate of Mycelial Growth and Stipe Elongation in Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8050477. [PMID: 35628733 PMCID: PMC9147824 DOI: 10.3390/jof8050477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022] Open
Abstract
Stipe elongation is an important process in the development of the fruiting body and is associated with the commodity quality of agaric fungi. In this study, F. filiformis was used as a model agaric fungus to reveal the function of the chromatin modifier gene containing the JmjC domain in stipe elongation. First, we identified a JmjC domain family gene (FfJmhy) with a 3684 bp length open reading frame (ORF) in F. filiformis. FfJmhy was predicted to have a histone H3K9 demethylation function, and was specifically upregulated during stipe rapid elongation. Further investigation revealed that the silencing of FfJmhy inhibited the mycelial growth, while overexpression of this gene had no effect on the mycelial growth. Comparative analysis revealed that the stipe elongation rate in FfJmhy overexpression strains was significantly increased, while it was largely reduced when FfJmhy was silenced. Taken together, these results suggest that FfJmhy positively regulates the mycelial growth and controls the elongation speed and the length of the stipe. Moreover, cell wall-related enzymes genes, including three exo-β-1,3-glucanases, one β-1,6-glucan synthase, four chitinases, and two expansin proteins, were found to be regulated by FfJmhy. Based on the putative functions of FfJmhy, we propose that this gene enhances the transcription of cell wall-related enzymes genes by demethylating histone H3K9 sites to regulate remodeling of the cell wall in rapid stipe elongation. This study provides new insight into the mechanism of rapid stipe elongation, and it is important to regulate the commodity quality of agaric fungi.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanping Shao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Chang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China;
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|
15
|
Merényi Z, Virágh M, Gluck-Thaler E, Slot JC, Kiss B, Varga T, Geösel A, Hegedüs B, Bálint B, Nagy LG. Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom forming fungi (Agaricomycetes). eLife 2022; 11:71348. [PMID: 35156613 PMCID: PMC8893723 DOI: 10.7554/elife.71348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here, we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans, a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts, and developmental gene expression, but not RNA editing or a ‘developmental hourglass,’ act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of nonadaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Emile Gluck-Thaler
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jason C Slot
- Department of Plant Pathology, Ohio State University, Columbus, United States
| | - Brigitta Kiss
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Torda Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - András Geösel
- Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - László G Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| |
Collapse
|
16
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
17
|
Xiong CY, Gong QY, Pei H, Liao CJ, Yang RC, Li GK, Huang J. Comparative Transcriptome Analysis Reveals Regulatory Networks during the Maize Ear Shank Elongation Process. Int J Mol Sci 2021; 22:ijms22137029. [PMID: 34209973 PMCID: PMC8268914 DOI: 10.3390/ijms22137029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
In maize, the ear shank is a short branch that connects the ear to the stalk. The length of the ear shank mainly affects the transportation of photosynthetic products to the ear, and also influences the dehydration of the grain by adjusting the tightness of the husks. However, the molecular mechanisms of maize shank elongation have rarely been described. It has been reported that the maize ear shank length is a quantitative trait, but its genetic basis is still unclear. In this study, RNA-seq was performed to explore the transcriptional dynamics and determine the key genes involved in maize shank elongation at four different developmental stages. A total of 8145 differentially expressed genes (DEGs) were identified, including 729 transcription factors (TFs). Some important genes which participate in shank elongation were detected via function annotation and temporal expression pattern analyses, including genes related to signal transduction hormones (auxin, brassinosteroids, gibberellin, etc.), xyloglucan and xyloglucan xyloglucosyl transferase, and transcription factor families. The results provide insights into the genetic architecture of maize ear shanks and developing new varieties with ideal ear shank lengths, enabling adjustments for mechanized harvesting in the future.
Collapse
Affiliation(s)
- Cai-Yun Xiong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (C.-Y.X.); (R.-C.Y.)
| | - Qing-You Gong
- Zhuhai Modern Agriculture Development Center, Zhuhai 519070, China;
| | - Hu Pei
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Chang-Jian Liao
- Technical Research Center of Dry Crop Variety Breeding in Fujian Province, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Rui-Chun Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (C.-Y.X.); (R.-C.Y.)
| | - Gao-Ke Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (G.-K.L.); (J.H.)
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (C.-Y.X.); (R.-C.Y.)
- Correspondence: (G.-K.L.); (J.H.)
| |
Collapse
|
18
|
Molecular Mechanism by Which the GATA Transcription Factor CcNsdD2 Regulates the Developmental Fate of Coprinopsis cinerea under Dark or Light Conditions. mBio 2021; 13:e0362621. [PMID: 35100879 PMCID: PMC8805025 DOI: 10.1128/mbio.03626-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coprinopsis cinerea has seven homologs of the Aspergillus nidulans transcription factor NsdD. Of these, CcNsdD1 and CcNsdD2 from C. cinerea show the best identities of 62 and 50% to A. nidulans NsdD, respectively. After 4 days of constant darkness cultivation, CcnsdD2, but not CcnsdD1, was upregulated on the first day of light/dark cultivation to induce fruiting bodies, and overexpression of CcnsdD2, but not CcnsdD1, produced more fruiting bodies under a light/dark rhythm. Although single knockdown of CcnsdD2 did not affect fruiting body production due to upregulation of its homolog CcnsdD1, the double-knockdown CcNsdD1/NsdD2-RNAi transformant showed defects in fruiting body formation under a light/dark rhythm. Knockdown of CcnsdD1/nsdD2 led to the differentiation of primary hyphal knots into sclerotia rather than secondary hyphal knots under a light/dark rhythm, similar to the differentiation of primary hyphal knots into sclerotia of the wild-type strain under darkness. The CcNsdD2-overexpressing transformant produced more primary hyphal knots, secondary hyphal knots, and fruiting bodies under a light/dark rhythm but only more primary hyphal knots and sclerotia under darkness. RNA-seq revealed that some genes reported previously to be involved in formation of hyphal knots and primordia, cyclopropane-fatty-acyl-phospholipid synthases cfs1-3, galectins cgl1-3, and hydrophobins hyd1-3 were downregulated in the CcNsdD1/NsdD2-RNAi transformant compared to the mock transformant. ChIP-seq and electrophoretic mobility shift assay demonstrated that CcNsdD2 bound to promoter regulatory sequences containing a GATC motif in cfs1, cfs2, cgl1, and hyd1. A molecular mechanism by which CcNsdD2 regulates the developmental fate of C. cinerea under dark or light conditions is proposed. IMPORTANCE The model mushroom Coprinopsis cinerea exhibits remarkable photomorphogenesis during fruiting body development. This study reports that the C. cinerea transcription factor CcNsdD2 promotes primary hyphal knot formation by upregulating cfs1, cfs2, cgl1, and hyd1. Although the induction of CcnsdD2 is not under direct control of light and photoreceptors, the CcNsdD2-mediated developmental fates of the primary hyphal knots depend on the following light/dark rhythm cultivation or dark cultivation after full growth of mycelia in the constant dark cultivation. This study provides new insight into the molecular mechanism by which CcNsdD2 regulates the developmental fate of C. cinerea under dark or light conditions. In addition, the result that overexpression of CcnsdD2 induced more secondary hyphal knots, primordia, and fruiting bodies under light/dark rhythm cultivation conditions has potential applied value in the edible mushroom industry.
Collapse
|